login
A072271
A partial product representation of f(n) = A015523(n) and L(n) = A072263(n).
0
3, 1, 24, 19, 431, 14, 7589, 311, 5559, 241, 2345179, 286, 41223001, 4229, 70051, 95471, 12736968311, 5309, 223887209309, 88321, 21607111, 1306469, 69176042380099, 94846, 2821250547551, 22964761, 160204320879, 27289081, 375703599163598591, 119641
OFFSET
1,1
COMMENTS
For even n, f(n) = Product_{d|n} a(d); for odd n, f(n) = Product_{d|n} a(2d).
For odd prime p, a(p) = L(p)/3, where L(n) = 5*f(n-1) + f(n+1).
a(1)=3, a(2)=1.
a(2p) = f(p) for odd primes p.
a(2^(k+1)) = L(2^k).
a(3*2^k) = L(2^k) - 5^k.
For odd n, L(n) = Product_{d|n} a(d).
For k > 0 and odd n, L(n*2^k) = Product_{d|n} a(d*2^(k+1)).
FORMULA
a(n) = (h-3)^g(n) * K(n, h^2/5) for n > 2 where h = (3+sqrt(29))/2, Phi(n, x) = n-th cyclotomic polynomial and g(n) is the order of Phi(n, x).
EXAMPLE
f(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 3*1*24*19*14*286 = 5477472 for even n;
f(7) = a(2)*a(14) = 1*4229 = 4229 for odd n.
L(6) = a(4)*a(12) = 19*286 = 5434 = 5*f(5) + f(7) = 5*241 + 4229 for even n;
L(15) = a(1)*a(3)*a(5)*a(15) = 3*24*431*70051 = 2173822632 for odd n.
CROSSREFS
KEYWORD
nonn
AUTHOR
Miklos Kristof, Jul 09 2002
EXTENSIONS
More terms and entry revised by Sean A. Irvine, Sep 19 2024
STATUS
approved