OFFSET
1,3
COMMENTS
For even n, f(n) = product_{d|n} a(d) and for odd n, f(n) = product_{d|n} a(2d).
Taking logarithms defines the sequence a(.) via a Mobius transformation (see A072183).
Writing f(n) and L(n) in terms of Binet formulas leads to a representation as cyclotomic polynomials.
FORMULA
Let h=(1+sqrt(17))/2, Phi(n, x) = n-th cyclotomic polynomial, so x^n-1= product_{d|n} Phi(d, x), and let g(d) be the order of Phi(d, x). Then a(n)=(h-1)^g(n)*Phi(n, h^2/4), n>2.
a(p) = L(p) for odd prime p.
a(2p) = f(p) for odd prime p.
a(2^k+1) = L(2^k).
a(3*2^k = L(2^k)-4^k.
L(n) = product_{d|n} a(d) for odd n.
L(n*2^k) = product_{d|n} a(d*2^(k+1)) for k>0 and odd n.
EXAMPLE
f(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 1*1*13*9*5*33 = 19305 for even n=12.
f(9)=a(2)*a(6)*a(18)= 1*5*233 = 1165 for odd n=9.
L(6)=a(4)*a(12) = 9*33 = 297 = 4*f(5)+f(7) = 4*29+181 for even n=6.
L(15)=a(1)*a(3)*a(5)*a(15) = 1*13*101*1021 = 1340573 for odd n=15.
MAPLE
A072270 := proc(n) if n <=2 then 1; else h := (1+sqrt(17))/2 ; cy := numtheory[cyclotomic](n, x) ; g := degree(cy) ; (h-1)^g*subs(x=h^2/4, cy) ; expand(%) ; end if; end proc: # R. J. Mathar, Nov 17 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Miklos Kristof, Jul 09 2002
EXTENSIONS
Divided argument of Phi by 4; moved comments to formula section - R. J. Mathar, Nov 17 2010
STATUS
approved