login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072265 Variant of Lucas numbers: a(n) = a(n-1)+4*a(n-2) starting with a(0)=2 and a(1)=1. 7
2, 1, 9, 13, 49, 101, 297, 701, 1889, 4693, 12249, 31021, 80017, 204101, 524169, 1340573, 3437249, 8799541, 22548537, 57746701, 147940849, 378927653, 970691049, 2486401661, 6369165857, 16314772501, 41791435929, 107050525933, 274216269649, 702418373381 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Pisano period lengths: 1, 1, 8, 1, 6, 8, 48, 2, 24, 6,120, 8, 12, 48, 24, 4, 8, 24, 18, 6,... . - R. J. Mathar, Aug 10 2012

The Lucas sequence V(1,-4). - Peter Bala, Jun 23 2015

REFERENCES

Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Wikipedia, Lucas sequence

Index entries for linear recurrences with constant coefficients, signature (1,4).

FORMULA

G.f.: (2-x)/(1-x-4x^2). - Gary W. Adamson, Jul 02 2003

a(n) = ((1+sqrt(17))/2)^n + ((1-sqrt(17))/2)^n = 4*A006131(n-1) + A006131(n+1) = A075117(4, n).

a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 17*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

MAPLE

a := n -> (Matrix([[1, 2]]). Matrix([[1, 1], [4, 0]])^n)[1, 2]; seq (a(n), n=0..26); # Alois P. Heinz, Aug 15 2008

MATHEMATICA

CoefficientList[Series[(z - 2)/(4 z^2 + z - 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)

PROG

(PARI) a(n)=if(n<0, 0, polsym(4+x-x^2, n)[n+1])

(Sage) [lucas_number2(n, 1, -4) for n in xrange(0, 27)] # Zerinvary Lajos, Apr 30 2009

CROSSREFS

Cf. A006131.

Sequence in context: A198204 A099599 A085488 * A192352 A180001 A204371

Adjacent sequences:  A072262 A072263 A072264 * A072266 A072267 A072268

KEYWORD

easy,nonn

AUTHOR

Miklos Kristof, Jul 08 2002

EXTENSIONS

Edited and extended by Henry Bottomley, Sep 03 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 21:46 EDT 2018. Contains 313809 sequences. (Running on oeis4.)