login
Triangle T(n,k) (n >= 2, 1 <= k <= n-1) giving number of non-crossing trees with n nodes and height k.
1

%I #18 Aug 12 2017 06:38:17

%S 1,1,2,1,7,4,1,20,26,8,1,54,126,76,16,1,143,548,504,200,32,1,376,2259,

%T 2900,1656,496,64,1,986,9034,15506,11528,4896,1184,128,1,2583,35469,

%U 79354,73172,39552,13536,2752,256,1,6764,137644,394642,439272,285992,123904,35712,6272,512

%N Triangle T(n,k) (n >= 2, 1 <= k <= n-1) giving number of non-crossing trees with n nodes and height k.

%C For n >= 2, the n-th row has n-1 terms.

%H E. Deutsch and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(01)00366-1">Statistics on non-crossing trees</a>, Discrete Math., 254 (2002), 75-87.

%F Column g.f. are T(k) - T(k-1) (k = 1, 2, ...), where T(0) = z and T(k) = z/(1 - T(k-1)^2/z). - _Emeric Deutsch_, Dec 30 2004

%e Triangle T(n,k) begins:

%e 1;

%e 1, 2;

%e 1, 7, 4;

%e 1, 20, 26, 8;

%e 1, 54, 126, 76, 16;

%e 1, 143, 548, 504, 200, 32;

%e 1, 376, 2259, 2900, 1656, 496, 64;

%e 1, 986, 9034, 15506, 11528, 4896, 1184, 128;

%p T[0]:=z: for k from 1 to 10 do T[k]:=simplify(z/(1-T[k-1]^2/z)) od:for k from 1 to 10 do t[k]:=series(T[k]-T[k-1],z=0,15) od: for n from 2 to 11 do seq(coeff(t[k],z^n),k=1..n-1) od; # _Emeric Deutsch_, Dec 30 2004

%Y Cf. A001764, A072247.

%Y Row sums give A001764.

%K nonn,tabl

%O 2,3

%A _N. J. A. Sloane_, Jul 06 2002

%E More terms from _Emeric Deutsch_, Dec 30 2004