This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072247 Triangle T(n,k) (n >= 2, 2 <= k <= n-1 if n > 2) giving number of non-crossing trees with n nodes and k endpoints. 3
 1, 3, 8, 4, 20, 30, 5, 48, 144, 75, 6, 112, 560, 595, 154, 7, 256, 1920, 3440, 1848, 280, 8, 576, 6048, 16380, 14994, 4788, 468, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS For n > 2 the n-th row has n-2 terms. The difference between this sequence and A091320 is that this sequence considers the degrees of all vertices whereas A091320 ignores the degree of the root vertex. - Andrew Howroyd, Nov 06 2017 LINKS E. Deutsch and M. Noy, Statistics on non-crossing trees, Discrete Math., 254 (2002), 75-87. FORMULA T(n, k) = U(n, k-1) - U(n, k) + binomial(n-1, k)*Sum_{j=0..k-1} binomial(n-1, j)*binomial(n-k-1, k-1-j)*2^(n-2*k+j)/(n-1) where U(n,k) = 2*binomial(n-2, k)*Sum_{j=0..k-1} binomial(n-1, j)*binomial(n-k-2, k-1-j)*2^(n-1-2*k+j)/(n-2) for 2 < k < n. - Andrew Howroyd, Nov 06 2017 EXAMPLE Triangle begins:    1;    3;    8,   4;   20,  30,  5;   48, 144, 75, 6;   ... PROG (PARI) U(n, k) = 2*binomial(n-2, k)*sum(j=0, k-1, binomial(n-1, j)*binomial(n-k-2, k-1-j)*2^(n-1-2*k+j))/(n-2); W(n, k) = binomial(n-1, k)*sum(j=0, k-1, binomial(n-1, j)*binomial(n-k-1, k-1-j)*2^(n-2*k+j))/(n-1); T(n, k) = if(n<3, n==2&&k==2, if(12), print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 06 2017 CROSSREFS Column k=2 gives A001792, row sums are A001764. Cf. A091320. Sequence in context: A127438 A303217 A106292 * A051359 A016670 A021726 Adjacent sequences:  A072244 A072245 A072246 * A072248 A072249 A072250 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, Jul 06 2002 EXTENSIONS Offset corrected by Andrew Howroyd, Nov 06 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:15 EDT 2018. Contains 316529 sequences. (Running on oeis4.)