login
A072241
Number of distinct partitions of Fibonacci(n).
2
1, 1, 1, 1, 2, 3, 6, 18, 76, 512, 6378, 173682, 12769602, 3328423936, 4338469000206, 43848229368772905, 5999189517441089061374, 22578203777383772718280932410, 5759108897879943749493986821813718586, 313503492905074747917062873989282073311633745920
OFFSET
0,5
LINKS
FORMULA
a(n) = A000009(A000045(n)).
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> g(F(n)):
seq(a(n), n=0..18); # Alois P. Heinz, Apr 06 2021
MATHEMATICA
Table[ PartitionsQ[ Fibonacci[n]], {n, 1, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 06 2002
EXTENSIONS
a(0)=1 prepended and a(19) added by Alois P. Heinz, Apr 06 2021
STATUS
approved