This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072219 Any number n can be written uniquely in the form n = 2^k_1 - 2^k_2 + 2^k_3 - ... + 2^k_{2r+1} where the signs alternate, there are an odd number of terms, and k_1 > k_2 > k_3 > ... > k_{2r+1} >= 0; sequence gives number of terms 2r+1. 10
 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 5, 5, 7, 5, 5, 5, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 5, 5, 7, 5, 5, 5, 5, 3, 5, 5, 7, 5, 7, 7, 7, 5, 5, 5, 7, 5, 5, 5, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS 2^k_1 is smallest power of 2 that is >= n. The first Mathematica program computes the sequence for numbers 1 to 2^m. - T. D. Noe, Jul 15 2002 a(A000079(n)) = 1; a(A238246(n)) = 3; a(A238247(n)) = 5; a(A238248(n)) = 7. - Reinhard Zumkeller, Feb 20 2014 Add 1 to every other terms of A005811. - N. J. A. Sloane, Jan 14 2017 REFERENCES P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, pp. 61-62. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..16384 S. Kropf, S. Wagner, q-Quasiadditive functions, arXiv:1605.03654 [math.CO], 2016. See section "The number of runs and the Gray code". FORMULA G.f.: 1/(1+x) + Sum(r>=0, x^(2^r) / ( 1+x^(2^(r+1)) ) ) / (1-x). - Ramasamy Chandramouli, Dec 22 2012. EXAMPLE 1=1, 2=2, 3=4-2+1, 4=4, 5=8-4+1, 6=8-4+2, ... MATHEMATICA Needs["DiscreteMath`Combinatorica`"]; sumit[s_List] := Module[{i, ss=0}, Do[If[OddQ[i], ss+=s[[i]], ss-=s[[i]]], {i, Length[s]}]; ss]; m=8; powers=Table[2^i, {i, 0, m}]; lst=Table[0, {2^m}]; sets={}; Do[sets=Union[sets, KSubsets[powers, i]], {i, 1, m+1, 2}]; Do[t=sets[[i]]; lst[[sumit[t]]]=Length[t], {i, Length[sets]}]; lst (* second program *) a[n_] := 2 Count[Split[IntegerDigits[n-1, 2], #1 == 1 && #2 == 0 &], {1, 0} ] + 1; Array[a, 105] (* Jean-François Alcover, Apr 01 2016 *) PROG (Haskell) a072219 = (+ 1) . (* 2) . a033264 . subtract 1 -- Reinhard Zumkeller, Feb 20 2014 CROSSREFS Cf. A000079, A005811, A030308, A072339, A065621, A238246, A238247, A238248. Equals 2*A033264(n-1) + 1. Sequence in context: A081325 A132680 A105595 * A173854 A059789 A275367 Adjacent sequences:  A072216 A072217 A072218 * A072220 A072221 A072222 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane, Jul 05 2002 EXTENSIONS More terms from T. D. Noe, Jul 15 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 05:56 EDT 2018. Contains 316202 sequences. (Running on oeis4.)