login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072219 Any number n can be written uniquely in the form n = 2^k_1 - 2^k_2 + 2^k_3 - ... + 2^k_{2r+1} where the signs alternate, there are an odd number of terms, and k_1 > k_2 > k_3 > ... > k_{2r+1} >= 0; sequence gives number of terms 2r+1. 10
1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 5, 5, 7, 5, 5, 5, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 3, 3, 3, 3, 1, 3, 3, 5, 3, 5, 5, 5, 3, 5, 5, 7, 5, 5, 5, 5, 3, 5, 5, 7, 5, 7, 7, 7, 5, 5, 5, 7, 5, 5, 5, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

2^k_1 is smallest power of 2 that is >= n.

The first Mathematica program computes the sequence for numbers 1 to 2^m. - T. D. Noe, Jul 15 2002

a(A000079(n)) = 1; a(A238246(n)) = 3; a(A238247(n)) = 5; a(A238248(n)) = 7. - Reinhard Zumkeller, Feb 20 2014

Add 1 to every other terms of A005811. - N. J. A. Sloane, Jan 14 2017

REFERENCES

P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, pp. 61-62.

S Kropf, S Wagner, q-Quasiadditive functions, arXiv:1605.03654, 2016. See section "The number of runs and the Gray code".

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..16384

Index entries for sequences related to binary expansion of n

FORMULA

G.f.: 1/(1+x) + Sum(r>=0, x^(2^r) / ( 1+x^(2^(r+1)) ) ) / (1-x). - Ramasamy Chandramouli, Dec 22 2012.

EXAMPLE

1=1, 2=2, 3=4-2+1, 4=4, 5=8-4+1, 6=8-4+2, ...

MATHEMATICA

Needs["DiscreteMath`Combinatorica`"]; sumit[s_List] := Module[{i, ss=0}, Do[If[OddQ[i], ss+=s[[i]], ss-=s[[i]]], {i, Length[s]}]; ss]; m=8; powers=Table[2^i, {i, 0, m}]; lst=Table[0, {2^m}]; sets={}; Do[sets=Union[sets, KSubsets[powers, i]], {i, 1, m+1, 2}]; Do[t=sets[[i]]; lst[[sumit[t]]]=Length[t], {i, Length[sets]}]; lst

(* second program *)

a[n_] := 2 Count[Split[IntegerDigits[n-1, 2], #1 == 1 && #2 == 0 &], {1, 0} ] + 1; Array[a, 105] (* Jean-Fran├žois Alcover, Apr 01 2016 *)

PROG

(Haskell)

a072219 = (+ 1) . (* 2) . a033264 . subtract 1

-- Reinhard Zumkeller, Feb 20 2014

CROSSREFS

Cf. A000079, A005811, A030308, A072339, A065621, A238246, A238247, A238248.

Equals 2*A033264(n-1) + 1.

Sequence in context: A081325 A132680 A105595 * A173854 A059789 A275367

Adjacent sequences:  A072216 A072217 A072218 * A072220 A072221 A072222

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Jul 05 2002

EXTENSIONS

More terms from T. D. Noe, Jul 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 00:45 EDT 2017. Contains 290855 sequences.