login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072211 a(n) = p-1 if n=p, p if n=p^e and e<>1, 1 otherwise; p a prime. 2
1, 1, 2, 2, 4, 1, 6, 2, 3, 1, 10, 1, 12, 1, 1, 2, 16, 1, 18, 1, 1, 1, 22, 1, 5, 1, 3, 1, 28, 1, 30, 2, 1, 1, 1, 1, 36, 1, 1, 1, 40, 1, 42, 1, 1, 1, 46, 1, 7, 1, 1, 1, 52, 1, 1, 1, 1, 1, 58, 1, 60, 1, 1, 2, 1, 1, 66, 1, 1, 1, 70, 1, 72, 1, 1, 1, 1, 1, 78, 1, 3, 1, 82, 1, 1, 1, 1, 1, 88, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Product_{d divides n} a(d) = phi(n).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = Product_{d divides n} phi(n/d)^mu(d). - Vladeta Jovovic, Mar 08 2004

a(n) = A217863(n)/A217863(n-1) for n > 1. - Eric Desbiaux, Nov 23 2012; corrected by Thomas Ordowski, Aug 25 2015

D.g.f.: zeta(s) + Sum_{p prime} (p-2+p^(-s))/(p^s-1), - Robert Israel, Aug 25 2015

MAPLE

f:= proc(n)

  local P;

  P:= numtheory:-factorset(n);

  if nops(P) > 1 then 1

  elif n = P[1] then P[1]-1

  else P[1]

  fi

end proc:

1, seq(f(n), n=2..100); # Robert Israel, Aug 25 2015

MATHEMATICA

Table[Which[PrimeQ@ n, n - 1, ! PrimeQ@ n && PrimePowerQ@ n,

First @@ FactorInteger@ n, True, 1], {n, 88}] (* Michael De Vlieger, Aug 25 2015 *)

PROG

(Haskell)

a072211 n = a072211_list !! (n-1)

a072211_list = 1 : zipWith div (tail a217863_list) a217863_list

-- Reinhard Zumkeller, Nov 24 2012

(PARI) a(n) = pp = isprimepower(n, &p); if (pp==1, n-1, if (pp, p, 1)); \\ Michel Marcus, Aug 25 2015

CROSSREFS

Cf. A000010.

Sequence in context: A027420 A116588 A069922 * A070306 A014665 A055035

Adjacent sequences:  A072208 A072209 A072210 * A072212 A072213 A072214

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Jul 03 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 21:48 EDT 2017. Contains 284288 sequences.