login
Weight distribution of [103,52,19] binary quadratic-residue (or QR) code.
1

%I #8 Sep 10 2024 18:41:31

%S 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,218875,919275,0,0,47592180,

%T 158640600,0,0,4283380248,11626317816,0,0,174684872920,393040964070,0,

%U 0,3432179437380,6483005603940,0,0,33982965303425,54372744485480

%N Weight distribution of [103,52,19] binary quadratic-residue (or QR) code.

%C Taken from the Tjhai-Tomlinson web site.

%H Sean A. Irvine, <a href="/A072189/b072189.txt">Table of n, a(n) for n = 0..103</a>

%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm"> Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a>

%e The weight distribution is:

%e i A_i

%e 0 1

%e 19 218875

%e 20 919275

%e 23 47592180

%e 24 158640600

%e 27 4283380248

%e 28 11626317816

%e 31 174684872920

%e 32 393040964070

%e 35 3432179437380

%e 36 6483005603940

%e 39 33982965303425

%e 40 54372744485480

%e 43 174960847539720

%e 44 238582973917800

%e 47 478328764312680

%e 48 558050225031460

%e 51 703022265147378

%e 52 703022265147378

%e 55 558050225031460

%e 56 478328764312680

%e 59 238582973917800

%e 60 174960847539720

%e 63 54372744485480

%e 64 33982965303425

%e 67 6483005603940

%e 68 3432179437380

%e 71 393040964070

%e 72 174684872920

%e 75 11626317816

%e 76 4283380248

%e 79 158640600

%e 80 47592180

%e 83 919275

%e 84 218875

%e 103 1

%K nonn,fini,full

%O 0,20

%A _N. J. A. Sloane_, Apr 11 2009