OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..586
F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
FORMULA
a(n) ~ 1913625 * 2^(6*n + 77) / (n^(63/2) * Pi^(7/2)). - Vaclav Kotesovec, Sep 10 2014
MAPLE
a:= proc(n) option remember; `if`(n<4, n!,
(-147456*(n+4)*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4)
+128*(33876+30709*n+6687*n^2+410*n^3)*(n-1)^2*(n-2)^2*a(n-3)
-4*(1092*n^5+37140*n^4+455667*n^3+2387171*n^2+4649270*n+1206000)*
(n-1)^2*a(n-2) +(-17075520+(22488312+(29223280+(10509820+(1764252+
(154164+(6804+120*n)*n)*n)*n)*n)*n)*n)*a(n-1))/
((n+16)*(n+7)^2*(n+15)^2*(n+12)^2))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 28 2012
MATHEMATICA
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n==0 || i==1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := If[n <= 8, n!, g[n, 8, {}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz (A214015) *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 25 2002
STATUS
approved