This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072115 Continued fraction expansion of abs(C) where C=-0.2959050055752...is the real negative solution to zeta(x)=x. 0
 0, 3, 2, 1, 1, 1, 2, 1, 7, 14, 1, 2, 10, 1, 5, 3, 1, 7, 2, 1, 2, 2, 2, 4, 1, 1, 12, 1, 1, 1, 14, 2, 10, 3, 5, 6, 2, 1, 6, 13, 1, 2, 2, 4, 8, 1, 4, 8, 2, 1, 16, 1, 1, 1, 1, 4, 2, 1, 1, 1, 3, 13, 4, 1, 2, 1, 6, 1, 1, 2, 43, 1, 3, 1, 1, 2, 2, 2, 1, 2, 2, 2, 10, 5, 4, 8, 1, 5, 3, 2, 1, 1, 3, 2, 19 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Start from any complex number z=x+iy, not solution to zeta(z)=z, iterate the zeta function on z. If zeta_m(z) (=zeta(zeta(....(z)..)) m times) has a limit when m grows, then this limit seems to always be the real number : C=-0.2959050055752....Example: if z=3+5I after 30 iterations : zeta_30(z)=-0.29590556499...-0.00000041029065...*I LINKS PROG (PARI) \p150 contfrac(abs(solve(X=-1, 0, zeta(X)-X))) CROSSREFS Cf. A069857. Sequence in context: A073572 A073356 A093032 * A210650 A218754 A079948 Adjacent sequences:  A072112 A072113 A072114 * A072116 A072117 A072118 KEYWORD base,cofr,easy,nonn AUTHOR Benoit Cloitre, Jun 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .