login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072094 Permutation of natural numbers induced by the automorphism cdr_robr_cdr! acting on the parenthesizations encoded by A014486. 4

%I

%S 0,1,3,2,7,8,5,4,6,17,18,20,21,22,13,12,10,9,11,15,14,16,19,45,46,48,

%T 49,50,54,55,57,58,59,61,62,63,64,35,36,32,31,34,26,27,24,23,25,29,28,

%U 30,33,41,40,38,37,39,43,42,44,47,52,51,53,56,60,129,130,132,133,134

%N Permutation of natural numbers induced by the automorphism cdr_robr_cdr! acting on the parenthesizations encoded by A014486.

%H A. Karttunen, <a href="http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatomorf.htm">Gatomorphisms</a> (Includes the complete Scheme program for computing this sequence)

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%o (Scheme function implementing this automorphism on list-structures:)

%o (define (cdr_robr_cdr! s) (cond ((not (pair? s))) ((not (pair? (car s))) (swap! s)) (else (cdr_robr_cdr! (cdr s)) (robr! s) (cdr_robr_cdr! (cdr s)))) s)

%o (define (robr! s) (let ((ex-cdr (cdr s))) (set-cdr! s (caar s)) (set-car! (car s) ex-cdr) (swap! (car s)) (swap! s) s))

%o (define (swap! s) (let ((ex-car (car s))) (set-car! s (cdr s)) (set-cdr! s ex-car) s))

%Y Inverse permutation: A072095. The car/cdr-flipped conjugate of A072093, i.e. A072094(n) = A057163(A072093(A057163(n))). Cf. also A071655-A071660, A072090-A072091.

%K nonn

%O 0,3

%A _Antti Karttunen_, Jun 25 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 03:39 EST 2016. Contains 278839 sequences.