login
A072045
Denominator of Product{prime(k)^2/(prime(k)^2 - 1) | 0<k<=n}, Numerator: A072044.
4
1, 3, 2, 16, 768, 18432, 442368, 127401984, 9172942848, 440301256704, 52836150804480, 50722704772300800, 3652034743605657600, 6135418369257504768000, 1030750286035260801024000, 98952027459385036898304000, 21373637931227167970033664000
OFFSET
0,2
COMMENTS
A072044(n)/a(n) -> (Pi^2)/6 (Leonhard Euler, 1748).
REFERENCES
M. Sigg: "Pi" p. 191 in Lexikon der Mathematik, Band 4, Spektrum Verlag, 2002.
EXAMPLE
For the first 3 primes: 2,3,5: (2^2/(2^2-1))*(3^2/(3^2-1))*(5^2/(5^2-1)) = (4/3)*(9/8)*(25/24) = (4*9*25)/(3*8*24) = 25/16, therefore a(3)=16;
A072044(9)/a(9)=718188003533/440301256704=1.631128671.
MATHEMATICA
Rest[Denominator[FoldList[Times, 1, (#^2/(#^2-1)&/@Prime[Range[20]])]]] (* Harvey P. Dale, Oct 14 2012 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Jun 09 2002
EXTENSIONS
More terms from Harvey P. Dale, Oct 14 2012
a(0)=1 prepended by Alois P. Heinz, May 11 2024
STATUS
approved