login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of terms in InversePhi set of p(n)*(p(n)-1) = phi(p(n)^2), where p(n) is the n-th prime and phi=A000010.
0

%I #13 Jan 09 2025 03:56:32

%S 3,4,5,4,2,7,5,2,2,2,2,6,10,2,2,2,2,7,4,2,16,4,2,8,19,5,2,2,2,13,2,2,

%T 2,4,5,4,2,4,2,5,2,14,2,21,2,2,2,2,2,5,5,2,28,2,2,2,2,2,8,8,2,2,2,2,4,

%U 5,2,14,2,7,5,2,2,5,4,2,2,11,7,17,2,11,2,26,2,2,12,4,5,2,2,2,2,2,2,2,5,5

%N Number of terms in InversePhi set of p(n)*(p(n)-1) = phi(p(n)^2), where p(n) is the n-th prime and phi=A000010.

%C p^2 and 2p^2 are always in inverse set, so a(n)>=2.

%H Max Alekseyev, <a href="https://home.gwu.edu/~maxal/gpscripts/invphi.gp">PARI/GP Scripts for Miscellaneous Math Problems: invphi.gp</a>, 2005-2019.

%F a(n) = Card[InvPhi(p(n)*(p(n)-1))] = Card[InvPhi(A036689(n))].

%e n=5: p(5)=11, a(5)=2 because InvPhi(110) = {121, 242}.

%e n=6: p(6)=13, a(6)=7 because InvPhi(13.12) = InvPhi(156)= {157, 169, 237, 314, 316, 338, 474}.

%p [seq(nops(invphi(ithprime(j)*(-1+ithprime(j)))),j=1..128)];

%o (PARI) a(n) = my(p=prime(n)); #invphi(p*(p-1)); \\ _Michel Marcus_, Mar 25 2020

%Y Cf. A036689, A000010.

%K nonn

%O 1,1

%A _Labos Elemer_, Jun 04 2002