login
A071991
a(1) = a(2) = 1; a(n) = a(floor(n/3)) + a(n - floor(n/3)).
2
1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, 16, 16, 17, 17, 18, 19, 20, 21, 22, 23, 23, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 34, 34, 34, 35, 35, 36, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 49, 50, 50, 50, 50
OFFSET
1,3
COMMENTS
"Rauzy's sequence" with initial values 1, 1.
David Moews showed that a(n)/n converges to about 0.68756. - Jim Nastos, Jan 08 2003
MATHEMATICA
a[1]=a[2]=1; a[n_] := a[n]=a[Floor[n/3]]+a[n-Floor[n/3]]; Table[a[n], {n, 0, 75}]
CROSSREFS
a(n) = A071995(n) + A071996(n).
Sequence in context: A179510 A005374 A206767 * A276952 A096336 A358062
KEYWORD
easy,nonn
AUTHOR
Jim Nastos, Jun 17 2002
EXTENSIONS
Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 23 2002
STATUS
approved