|
|
A071946
|
|
Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).
|
|
4
|
|
|
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 6, 13, 19, 19, 1, 8, 23, 44, 63, 63, 1, 10, 37, 87, 156, 219, 219, 1, 12, 55, 155, 330, 568, 787, 787, 1, 14, 77, 255, 629, 1260, 2110, 2897, 2897, 1, 16, 103, 395, 1111, 2527, 4856, 7972, 10869, 10869, 1, 18, 133, 583, 1849, 4706
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
Table of n, a(n) for n=0..60.
D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
|
|
EXAMPLE
|
1; 1,1; 1,2,2; 1,4,6,6; 1,6,13,19,19; ...
|
|
CROSSREFS
|
Related arrays: A071943, A071944, A071945.
A108076 is the reverse, A119254 is the row sums and A071969 is the last (largest) number in each row.
Sequence in context: A191490 A061598 A328873 * A053495 A096747 A299504
Adjacent sequences: A071943 A071944 A071945 * A071947 A071948 A071949
|
|
KEYWORD
|
nonn,easy,tabl
|
|
AUTHOR
|
N. J. A. Sloane, Jun 15 2002
|
|
EXTENSIONS
|
More terms from Joshua Zucker, May 10 2006
|
|
STATUS
|
approved
|
|
|
|