login
A071946
Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).
5
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 6, 13, 19, 19, 1, 8, 23, 44, 63, 63, 1, 10, 37, 87, 156, 219, 219, 1, 12, 55, 155, 330, 568, 787, 787, 1, 14, 77, 255, 629, 1260, 2110, 2897, 2897, 1, 16, 103, 395, 1111, 2527, 4856, 7972, 10869, 10869, 1, 18, 133, 583, 1849, 4706, 10130, 18889, 30545, 41414, 41414
OFFSET
0,5
LINKS
D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 2;
1, 4, 6, 6;
1, 6, 13, 19, 19;
...
MAPLE
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(k<0 or n<k, 0, T(n-1, k)+T(n, k-1)+T(n-3, k-1)))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, May 05 2023
CROSSREFS
Related arrays: A071943, A071944, A071945.
A108076 is the reverse, A119254 is the row sums and A071969 is the last (largest) number in each row.
Sequence in context: A191490 A061598 A328873 * A053495 A096747 A299504
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Jun 15 2002
EXTENSIONS
More terms from Joshua Zucker, May 10 2006
STATUS
approved