login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of combinatorial types of n-dimensional parallelohedra.
4

%I #46 Feb 20 2021 09:57:21

%S 1,1,2,5,52,103769

%N Number of combinatorial types of n-dimensional parallelohedra.

%C a(n) is the number of topologically distinct shapes the Voronoi cell (or Vocell) of an n-dimensional lattice can have.

%C a(n) is the number of combinatorially distinct parallelotopes that tile R^n. Dirichlet proved a(2) = 2, Fedorov showed a(3) = 5, while a(4) = 52 is due to Delone as corrected by Stogrin, and a(5) = 103769 to Engel. - _Jonathan Sondow_, May 26 2017

%C The papers by Dutuor Sikiric, Garber et al say that actually a(5) = 110244. The claim that every parallelotope is a Voronoi cell of some lattice in R^n up to an affine transformation is a conjecture open for n > 5. - _Andrey Zabolotskiy_, Feb 20 2021

%D J. H. Conway, The Sensual Quadratic Form.

%D E. S. Fedorov, An Introduction to the Theory of Figures. Notices of the Imperial Petersburg Mineralogical Society, 2nd series, vol. 21, 1-279, 1885. (English translation in Symmetry of crystals, ACA Monograph no. 7, 50-131, 1971.)

%H David Austin, <a href="http://www.ams.org/samplings/feature-column/fc-2013-11">Fedorov's Five Parallelohedra</a>, AMS Feature Column, 2017.

%H B. N. Delaunay, <a href="http://mi.mathnet.ru/eng/izv5329">Sur la partition régulière de l'espace à 4-dimensions. Première partie</a>, Izv. Akad. Nauk SSSR Otdel. Fiz.-Mat. Nauk, 79-110, 1929.

%H B. N. Delaunay, <a href="http://mi.mathnet.ru/eng/izv5333">Sur la partition régulière de l'espace à 4-dimensions. Deuxième partie</a>, Izv. Akad. Nauk SSSR Otdel. Fiz.-Mat. Nauk, 145-164, 1929.

%H Lejeune G. Dirichlet, <a href="https://eudml.org/doc/147457">Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen</a>, J. reine angew. Math., 40 209-227 (1850); [Oeuvre Vl. II, p. 41-59].

%H Mathieu Dutour Sikirić, Alexey Garber, Achill Schürmann, Clara Waldmann, <a href="https://doi.org/10.1107/S2053273316011682">The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices</a>, Acta Crystallographica A72 (2016), 673-683; arXiv:<a href="https://arxiv.org/abs/1507.00238">1507.00238</a> [math.MG], 2015-2016.

%H Mathieu Dutour Sikirić, Alexey Garber, and Alexander Magazinov, <a href="https://doi.org/10.1137/18M1235004">On the Voronoi Conjecture for Combinatorially Voronoi Parallelohedra in Dimension 5</a>, SIAM J. Discrete Math., 34(4), 2481-2501 (2020).

%H P. Engel, <a href="https://doi.org/10.1107/S0108767300007145">The contraction types of parallelohedra in E^5</a>, Acta Cryst. A 56 (2000), 491-496.

%H Alexey Garber and Alexander Magazinov, <a href="https://arxiv.org/abs/1906.05193">Voronoi conjecture for five-dimensional parallelohedra</a>, arXiv:1906.05193 [math.CO], 2019-2020.

%H M. I. Stogrin, <a href="http://mi.mathnet.ru/tm3121">Regular Dirichlet-Voronoi partitions for the second triclinic group</a>, Trudy Matematicheskogo Instituta imeni V. A. Steklova, 123 (1973) [in Russian] = Proceedings of the Steklov Institute of Mathematics, 123 (1973).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Parallelohedron">Parallelohedron</a>

%e In 1 dimension: the Vocell is an interval (1 possible shape)

%e In 2 dimensions: a hexagon or rectangle (2 possible shapes)

%e In 3 dimensions: truncated octahedron, hexarhombic dodecahedron, rhombic dodecahedron, hexagonal prism, cuboid (5 possible shapes)

%Y Cf. A071881, A071882, A321015.

%K nonn,hard,nice,more

%O 0,3

%A _N. J. A. Sloane_, Jun 10 2002

%E Corrected by _J. H. Conway_, Dec 25 2003