login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071878 G.f. D(x) satisfies: D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x)). 3
1, 6, 47, 420, 4058, 41286, 435739, 4726644, 52373294, 590247900, 6744908118, 77969430864, 910131055980, 10712886629958, 127012431301779, 1515405441505380, 18181513435560278, 219219809605566132, 2654917102081791394, 32281268283914386200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..19.

FORMULA

From Paul D. Hanna, Mar 01 2021: (Start)

G.f.: D(x) = (1/x) * Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ).

G.f. D = D(x) and related functions A = A(x), B = B(x), C = C(x), satisfy:

(1.a) A = 1/((1 - 2*x*B)*(1 - 3*x*C)).

(1.b) B = 1/((1 - x*A)*(1 - 3*x*C)).

(1.c) C = 1/((1 - x*A)*(1 - 2*x*B)).

(1.d) D = 1/((1 - x*A)*(1 - 2*x*B)*(1 - 3*x*C)).

(1.e) D = sqrt(A*B*C).

(2.a) A = (1 + 2*x*D)*(1 + 3*x*D).

(2.b) B = (1 + x*D)*(1 + 3*x*D).

(2.c) C = (1 + x*D)*(1 + 2*x*D).

(2.d) D = (sqrt(24*A + 1) - 5)/(12*x) = (sqrt(12*B + 4) - 4)/(6*x) = (sqrt(8*C + 1) - 3)/(4*x).

(3.a) A = B/(1 - x*B) = C/(1 - 2*x*C) = D/(1 + x*D).

(3.b) B = C/(1 - x*C) = A/(1 + x*A) = D/(1 + 2*x*D).

(3.c) C = A/(1 + 2*x*A) = B/(1 + x*B) = D/(1 + 3*x*D).

(3.d) D = A/(1 - x*A) = B/(1 - 2*x*B) = C/(1 - 3*x*C).

(3.e) 1 = (1 + x*A)*(1 - x*B) = (1 + 2*x*A)*(1 - 2*x*C) = (1 + x*B)*(1 - x*C).

(3.f) 1 = (1 - x*A)*(1 + x*D) = (1 - 2*x*B)*(1 + 2*x*D) = (1 - 3*x*C)*(1 + 3*x*D).

(4.a) A = (1 + x*A)*(1 + 2*x*A)/(1 - x*A)^2.

(4.b) B = (1 - x^2*B^2)/(1 - 2*x*B)^2.

(4.c) C = (1 - x*C)*(1 - 2*x*C)/(1 - 3*x*C)^2.

(4.d) D = (1 + x*D)*(1 + 2*x*D)*(1 + 3*x*D).

(5.a) A = (1/x)*Series_Reversion( x*(1 - x)^2 / ((1 + x)*(1 + 2*x)) ).

(5.b) B = (1/x)*Series_Reversion( x*(1 - 2*x)^2 / (1 - x^2) ).

(5.c) C = (1/x)*Series_Reversion( x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x)) ).

(5.d) D = (1/x)*Series_Reversion( x / ((1 + x)*(1 + 2*x)*(1 + 3*x)) ).

(End)

a(n) ~ sqrt((3*s + 11*r*s^2 + 9*r^2*s^3)/(Pi*(22 + 36*r*s))) / (n^(3/2)*r^(n + 1/2)), where r = 4 - sqrt(503/3) * cos(arctan(359*sqrt(359/3)/5196)/3)/2 + sqrt(503) * sin(arctan(359*sqrt(359/3)/5196)/3)/2 = 0.07627811703169412709742160523783922642030319519275992338... and s = 3.4807233253858558164460728604043678335213362043902693560668... are positive real roots of the system of equations (1 + r*s)*(1 + 2*r*s)*(1 + 3*r*s) = s, 2*r*(3 + 11*r*s + 9*r^2*s^2) = 1. - Vaclav Kotesovec, Mar 02 2021

EXAMPLE

G.f. D(x) 1 + 6*x + 47*x^2 + 420*x^3 + 4058*x^4 + 41286*x^5 + 435739*x^6 + 4726644*x^7 + 52373294*x^8 + 590247900*x^9 + 6744908118*x^10 + ...

such that D(x) = (1 + x*D(x))*(1 + 2*x*D(x))*(1 + 3*x*D(x))

and also D(x) = sqrt(A(x)*B(x)*C(x)) where

A(x) = 1 + 5*x + 36*x^2 + 307*x^3 + 2880*x^4 + 28714*x^5 + 298620*x^6 + 3203183*x^7 + 35181792*x^8 + 393697030*x^9 + 4472679816*x^10 + ...

B(x) = 1 + 4*x + 27*x^2 + 224*x^3 + 2070*x^4 + 20444*x^5 + 211239*x^6 + 2255200*x^7 + 24680862*x^8 + 275408456*x^9 + 3121711758*x^10 + ...

C(x) = 1 + 3*x + 20*x^2 + 165*x^3 + 1520*x^4 + 14982*x^5 + 154588*x^6 + 1648713*x^7 + 18029456*x^8 + 201063402*x^9 + 2277890472*x^10 + ...

RELATED SERIES.

D(x)^2 = A(x)*B(x)*C(x) = 1 + 12*x + 130*x^2 + 1404*x^3 + 15365*x^4 + 170748*x^5 + 1924762*x^6 + 21971760*x^7 + 253573386*x^8 + 2954377800*x^9 + ...

B(x)*C(x) = D(x) + x*D(x)^2 = 1 + 7*x + 59*x^2 + 550*x^3 + 5462*x^4 + 56651*x^5 + 606487*x^6 + 6651406*x^7 + 74345054*x^8 + ...

A(x)*C(x) = D(x) + 2*x*D(x)^2 = 1 + 8*x + 71*x^2 + 680*x^3 + 6866*x^4 + 72016*x^5 + 777235*x^6 + 8576168*x^7 + 96316814*x^8 + ...

A(x)*B(x) = D(x) + 3*x*D(x)^2 = 1 + 9*x + 83*x^2 + 810*x^3 + 8270*x^4 + 87381*x^5 + 947983*x^6 + 10500930*x^7 + 118288574*x^8 + ...

MATHEMATICA

CoefficientList[1/x * InverseSeries[Series[x/((1 + x)*(1 + 2*x)*(1 + 3*x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Mar 02 2021 *)

PROG

(PARI) {d(n) = my(A=1, B=1, C=1, D=1); for(i=1, n,

A = 1/((1-2*x*B)*(1-3*x*C) +x*O(x^n));

B = 1/((1-1*x*A)*(1-3*x*C) +x*O(x^n));

C = 1/((1-1*x*A)*(1-2*x*B) +x*O(x^n));

D = sqrt(A*B*C)); polcoeff(D, n)}

for(n=0, 30, print1(c(n), ", ")) \\ Paul D. Hanna, Mar 01 2021

(PARI) /* By Series Reversion: */

{d(n) = my(D = 1/x*serreverse( x/((1 + x)*(1 + 2*x)*(1 + 3*x) +x*O(x^n)))); polcoeff(D, n)}

for(n=0, 11, print1(d(n), ", ")) \\ Paul D. Hanna, Mar 01 2021

CROSSREFS

Cf. A341961 (A(x)), A341962 (B(x)), A341963 (C(x)).

Sequence in context: A024076 A015553 A291028 * A104256 A289211 A307567

Adjacent sequences:  A071875 A071876 A071877 * A071879 A071880 A071881

KEYWORD

nonn,changed

AUTHOR

Paul D. Hanna, Jun 10 2002

EXTENSIONS

Entry revised by Paul D. Hanna, Mar 01 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 01:41 EST 2021. Contains 341934 sequences. (Running on oeis4.)