login
Primes p such that the number of ones in the binary representation of p^p is prime.
1

%I #9 Apr 14 2022 11:55:51

%S 7,17,19,23,31,37,53,59,61,73,97,197,227,337,373,439,449,547,563,577,

%T 587,593,673,751,787,1019,1021,1031,1123,1151,1171,1187,1201,1223,

%U 1229,1249,1301,1321,1399,1583,1621,1721,1867,1879,2039,2053,2069,2141,2411

%N Primes p such that the number of ones in the binary representation of p^p is prime.

%H Harvey P. Dale, <a href="/A071845/b071845.txt">Table of n, a(n) for n = 1..1000</a>

%e 7 is a term because 7^7 = 823543 = 11001001000011110111 has 11 ones.

%t Select[Prime[Range[400]],PrimeQ[DigitCount[#^#,2,1]]&] (* _Harvey P. Dale_, Apr 14 2022 *)

%K base,nonn

%O 1,1

%A _Jason Earls_, Jun 08 2002