The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071831 Frequency ratios for notes of C-major scale starting at c = 1 (numerators). 7
 1, 9, 5, 4, 3, 5, 15, 2, 9, 5, 8, 3, 10, 15, 4, 9, 5, 16, 6, 20, 15, 8, 9, 10, 32, 12, 40, 15, 16, 18, 20, 64, 24, 80, 30, 32, 36, 40, 128, 48, 160, 60, 64, 72, 80, 256, 96, 320, 120, 128, 144, 160, 512, 192, 640, 240, 256, 288, 320, 1024, 384, 1280, 480, 512, 576, 640, 2048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2). FORMULA a(n+7) = 2*a(n) for n >= 21. - Rick L. Shepherd, Apr 06 2006 G.f.: (15*x^27 + 9*x^22 + 15*x^20 + 5*x^16 + 9*x^15 + 15*x^13 + 3*x^11 + 5*x^9 + 9*x^8 - 15*x^6 - 5*x^5 - 3*x^4 - 4*x^3 - 5*x^2 - 9*x - 1) / (2*x^7 - 1). - Colin Barker, Feb 14 2014 EXAMPLE The ratios are 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b); followed by these 7 numbers multiplied by successive powers of 2. MATHEMATICA Numerator[2^Floor[#/7]Rationalize[2^((-1+Floor[12(1+Mod[#, 7])/7])/12), 2^-6]]&/@Range[0, 70] (* Federico Provvedi, Feb 14 2014 *) PROG (PARI) r=[1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8]; for(n=0, 10, a=2^n*r; for(m=1, 7, print1(numerator(a[m]), ", "))) - Rick L. Shepherd, Apr 06 2006 (PARI) A071831(n)=numerator([1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8][n%7+1]*2^(n\7)) \\ M. F. Hasler, Jun 13 2012 CROSSREFS Cf. A071832, A071833. Sequence in context: A104139 A244648 A198359 * A245294 A110894 A359282 Adjacent sequences: A071828 A071829 A071830 * A071832 A071833 A071834 KEYWORD nonn,frac,easy,nice AUTHOR N. J. A. Sloane, Jun 10 2002 EXTENSIONS More terms from Rick L. Shepherd, Apr 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 12:56 EST 2023. Contains 359945 sequences. (Running on oeis4.)