login
Continued fraction expansion of a constant x where each term is determined by a(n) = floor(1/frac(n*x)), where x=0.283151006074509519...
0

%I #3 Mar 30 2012 18:36:32

%S 3,1,1,7,2,1,1,3,1,1,8,2,1,1,4,1,1,10,2,1,1,4,1,1,12,2,1,1,4,2,1,16,2,

%T 1,1,5,2,1,23,3,1,1,5,2,1,40,3,1,1,6,2,1,142,3,1,1,7,2,1,1,3,1,1,8,2,

%U 1,1,3,1,1,9,2,1,1,4,1,1,11,2,1,1,4,1,1,14,2,1,1,4,2,1,20,3,1,1,5,2,1,31

%N Continued fraction expansion of a constant x where each term is determined by a(n) = floor(1/frac(n*x)), where x=0.283151006074509519...

%C This describes the largest constant whose continued fraction is determined by the given self-referential term-by-term formula. The next smaller such constant is 0.227531347569898928...

%e x=0.283151006074509519; a(1000) = 6 since floor(1/frac(1000*x)) = floor(1/.1510060745) = 6.

%K cofr,easy,nonn

%O 0,1

%A _Paul D. Hanna_, Jun 07 2002