OFFSET
0,1
COMMENTS
In other words, this constant satisfies x = Sum_{n>=0} ( floor(10*n*x) (mod 10) ) / 10^n.
FORMULA
a(n) = floor(10*n*x) (mod 10), where x = Sum_{k>0} a(k)/10^k.
a(n) = 9 - A071874(n).
EXAMPLE
x = 0.37148269370482593604815926047158260371482693704825...
a(5) = 8 since floor(10*5*x) (mod 10) = 8.
The multiples of this constant x begin:
1*x = 0.3714826937048259360481592604715826037148...
2*x = 0.7429653874096518720963185209431652074297...
3*x = 1.114448081114477808144477781414747811144...
4*x = 1.485930774819303744192637041886330414859...
5*x = 1.857413468524129680240796302357913018574...
6*x = 2.228896162228955616288955562829495622289...
7*x = 2.600378855933781552337114823301078226004...
8*x = 2.971861549638607488385274083772660829719...
9*x = 3.343344243343433424433433344244243433433...
10*x = 3.714826937048259360481592604715826037148...
11*x = 4.086309630753085296529751865187408640863...
12*x = 4.457792324457911232577911125658991244578...
wherein the tenths place of n*x yields the n-th digit of x.
MATHEMATICA
k = 3; f[x_] := Floor[10*FractionalPart[x]]; Clear[xx]; xx[n_] := xx[n] = Catch[For[x = xx[n - 1], True, x += 10^(-n), If[f[n*x] == f[10^(n - 1)*x], Throw[x]]]]; xx[1] = k/10; Scan[xx, Range[100]]; RealDigits[xx[100]][[1]] (* Jean-François Alcover, Dec 06 2012 *)
Clear[a]; a[1] = 3; a[2] = 7; a[n0 = 3] = 1; a[_] = 0; digits = 10^(n0-1); Do[a[n] = Mod[Floor[10*n*Sum[a[k]/10^k, {k, 1, n}]], 10], {n, n0+1, digits}]; Table[a[n], {n, 1, digits}] (* Jean-François Alcover, May 11 2015 *)
CROSSREFS
KEYWORD
AUTHOR
Paul D. Hanna, Jun 06 2002
STATUS
approved