OFFSET
0,1
COMMENTS
In other words, this constant satisfies x = Sum_{n>=0} ( floor(10*n*x) (mod 10) ) / 10^n.
FORMULA
a(n) = floor(10*n*x) (mod 10), where x = Sum_{k>0} a(k)/10^k.
a(n) = 9 - A071875(n).
EXAMPLE
x = .25702570358035813681369146914792479257025703580358...
a(6) = 5 since floor(10*6*x) (mod 10) = 5.
The multiples of this constant x begin:
1*x = 0.2570257035803581368136914691479247925703...
2*x = 0.5140514071607162736273829382958495851405...
3*x = 0.7710771107410744104410744074437743777108...
4*x = 1.028102814321432547254765876591699170281...
5*x = 1.285128517901790684068457345739623962851...
6*x = 1.542154221482148820882148814887548755422...
7*x = 1.799179925062506957695840284035473547992...
8*x = 2.056205628642865094509531753183398340562...
9*x = 2.313231332223223231323223222331323133132...
10*x = 2.570257035803581368136914691479247925703...
11*x = 2.827282739383939504950606160627172718273...
12*x = 3.084308442964297641764297629775097510843...
wherein the tenths place of n*x yields the n-th digit of x.
MATHEMATICA
Clear[a]; a[1] = 2; a[2] = 5; a[n0 = 3] = 7; a[_] = 0; digits = 10^(n0-1); Do[a[n] = Mod[Floor[10*n*Sum[a[k]/10^k, {k, 1, n}]], 10], {n, n0+1, digits}]; Table[a[n], {n, 1, digits}]
CROSSREFS
KEYWORD
AUTHOR
Paul D. Hanna, Jun 06 2002
STATUS
approved