login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071605 Number of ordered pairs (a,b) of elements of the symmetric group S_n such that the pair a,b generates S_n. 7

%I #24 Nov 25 2019 02:53:16

%S 1,3,18,216,6840,228960,15573600,994533120,85232891520,8641918252800,

%T 1068888956889600,155398203460684800,26564263279602048000

%N Number of ordered pairs (a,b) of elements of the symmetric group S_n such that the pair a,b generates S_n.

%C a(n) is an Eulerian function of S_n. - _Kenneth G. Hawes_, Nov 25 2019

%H L. Babai, <a href="http://dx.doi.org/10.1016/0097-3165(89)90068-X">The probability of generating the symmetric group</a>, J. Combin. Theory, A52 (1989), 148-153.

%H J. D. Dixon, <a href="http://dx.doi.org/10.1007/BF01110210">The probability of generating the symmetric group</a>, Math. Z. 110 (1969) 199-205.

%H J. D. Dixon, <a href="http://dx.doi.org/10.1016/j.disc.2007.07.021">Problem 923 (BCC20.17), Indecomposable permutations and transitive groups</a>, in Research Problems from the 20th British Combinatorial Conference, Discrete Math., 308 (2008), 621-630.

%H P. Hall, <a href="https://doi.org/10.1093/qmath/os-7.1.134">The Eulerian functions of a group</a>, Quart. J. Math. 7 (1936), 134-151.

%H T. Luczak and L. Pyber, <a href="http://dx.doi.org/10.1017/S0963548300000869">On random generation of the symmetric group</a>, Combin. Probab. Comput., 2 (1993), 505-512.

%H A. Maroti and C. M. Tamburini, <a href="http://dx.doi.org/10.1007/s00013-010-0216-z">Bounds for the probability of generating the symmetric and alternating groups</a>, Arch. Math. (Basel), 96 (2011), 115-121.

%F Except for n=2 (because of the "replacement") in A040175, a(n) = n! * A040175(n).

%F a(n) = 2 * A001691(n) for n > 2.

%o (GAP)

%o a := function(n)

%o local tom, mu, lens, orders, num, k;

%o tom := TableOfMarks(Concatenation("S",String(n)));

%o if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi;

%o mu := MoebiusTom(tom).mu;

%o lens := LengthsTom(tom);

%o orders := OrdersTom(tom);

%o num := 0;

%o for k in [1 .. Length(lens)] do

%o if IsBound(mu[k]) then

%o num := num + mu[k] * lens[k] * orders[k]^2;

%o fi;

%o od;

%o return num;

%o end; # _Stephen A. Silver_, Feb 20 2013

%Y Cf. A040175, A135474.

%K nonn,more,nice

%O 1,2

%A Sharon Sela (sharonsela(AT)hotmail.com), Jun 02 2002

%E a(10)-a(13) added by _Stephen A. Silver_, Feb 20 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 23:15 EDT 2024. Contains 371798 sequences. (Running on oeis4.)