%I
%S 20,70,88,104,272,304,368,464,550,572,650,748,836,945,1184,1312,1376,
%T 1430,1504,1575,1696,1870,1888,1952,2002,2090,2205,2210,2470,2530,
%U 2584,2990,3128,3190,3230,3410,3465,3496,3770,3944,4030,4070,4095,4216,4288
%N Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers).
%C This is a subsequence of the primitive abundant number sequence A091191, since none of these numbers are a positive integer multiple of a perfect number (A000396).  _Timothy L. Tiffin_, Jul 15 2016
%C If the terms of this sequence are removed from A091191, then the resulting sequence will be A275082.  _Timothy L. Tiffin_, Jul 16 2016
%D Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: SpringerVerlag, p. 46, also section B2, 1994.
%H Donovan Johnson, <a href="/A071395/b071395.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimitiveAbundantNumber.html">Primitive Abundant Number</a>
%e 20 is a term since 1, 2, 4, 5, and 10 (the proper divisors of 20) are all deficient numbers.  _Timothy L. Tiffin_, Jul 15 2016
%t Select[Range@ 5000, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &] (* _Michael De Vlieger_, Jul 16 2016 *)
%o (PARI) isA071395(v) = {if (sigma(v) <= 2*v, return (0)); fordiv (v, d, if ((d != v) && (sigma(d) >= 2*d), return (0));); return (1);} \\ _Michel Marcus_, Mar 10 2013
%Y Cf. A006038, A000396, A005100, A005101, subsequence of A091191, A275082.
%K nonn
%O 1,1
%A Joe McCauley (mccauley(AT)davesworld.net), Jun 12 2002
%E Offset corrected by _Donovan Johnson_, Aug 28 2011
