login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071330 Number of decompositions of n into sum of two prime powers. 8
0, 1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 5, 3, 5, 4, 4, 2, 5, 3, 5, 4, 5, 3, 6, 3, 7, 5, 7, 4, 7, 2, 6, 4, 6, 3, 6, 3, 6, 5, 6, 2, 8, 3, 8, 4, 6, 2, 9, 3, 7, 4, 6, 2, 8, 3, 7, 4, 7, 3, 9, 2, 8, 5, 7, 2, 10, 3, 8, 6, 7, 3, 9, 2, 9, 4, 7, 4, 11, 3, 9, 4, 7, 3, 12, 4, 8, 3, 7, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(2*n) > 0 (Goldbach's conjecture).

a(A071331(n)) = 0; A095840(n) = a(A000961(n)).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

EXAMPLE

10 = 1+3^2 = 2+2^3 = 3+7 = 5+5, therefore a(10) = 4;

11 = 2+3^2 = 3+2^3 = 4+7, therefore a(11) = 3;

12 = 1+11 = 3+3^2 = 2^2+2^3 = 5+7, therefore a(12) = 4;

a(149)=0, as for all x<149: if x prime power then 149-x not.

MATHEMATICA

primePowerQ[n_] := Length[ FactorInteger[n]] == 1; a[n_] := (r = 0; Do[ If[ primePowerQ[k] && primePowerQ[n-k], r++], {k, 1, Floor[n/2]}]; r); Table[a[n], {n, 1, 95}](* Jean-Fran├žois Alcover, Nov 17 2011, after Michael Porter *)

PROG

(PARI) ispp(n) = (omega(n)==1 || n==1)

A071330(n) = {local(r); r=0; for(i=1, floor(n/2), if(ispp(i) && ispp(n-i), r++)); r} \\ Michael B. Porter, Dec 04 2009

(PARI) a(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p), s++)); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e), s++))); s+(!!isprimepower(n-1))+(n==2) \\ Charles R Greathouse IV, Nov 21 2014

(Haskell)

a071330 n = sum $

   map (a010055 . (n -)) $ takeWhile (<= n `div` 2) a000961_list

-- Reinhard Zumkeller, Jan 11 2013

CROSSREFS

Cf. A000961, A002375, A071331, A061358, A109829, A010055.

Sequence in context: A182745 A129843 A050430 * A092333 A107452 A205018

Adjacent sequences:  A071327 A071328 A071329 * A071331 A071332 A071333

KEYWORD

nonn,nice

AUTHOR

Reinhard Zumkeller, May 19 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 19:53 EDT 2015. Contains 261098 sequences.