The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071268 Sum of all digit permutations of the concatenation of first n numbers. 4
 1, 33, 1332, 66660, 3999960, 279999720, 22399997760, 2015999979840, 201599999798400, 927359999990726400, 1064447999999893555200, 2058376319999997941623680, 4439635199999999955603648000, 10585935359999999998941406464000, 27655756127999999999972344243872000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The permutations yield n! different numbers and if they are stacked vertically then the sum of each column is (n-1)! times the n-th triangular number = (n-1)!*n(n+1)/2. a(n) = [(n+1)!/2]*[{10^n -1}/9]. Note that this is only valid for 1 <= n <= 9. The first person who studied the sum of different permutations of digits of a given number seems to be the French scientist Eugène Aristide Marre (1823-1918). See links. - Bernard Schott, Dec 07 2012 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..208, Jan 04 2019 A. Marre, Trouver la somme de toutes les permutations différentes d'un nombre donné., Nouvelles Annales de Mathématiques, 1ère série, tome 5 (1846), p. 57-60. Norbert Verdier and Raymond Cordier, QDV4 : Marre, Marre et Marre, page=1 (French mathematical forum les-mathematiques.net) FORMULA a(n) = (n + 1)!*(10^n - 1)/18 for 1 <= n <= 9. a(n) = ((10^A055642(A007908(n))-1)/9)*(A047726(A007908(n))*A007953(A007908(n))/(A055642(A007908(n)))). - Altug Alkan, Aug 28 2016 EXAMPLE For n=3, a(3) = 123 + 132 + 213 + 231 + 312 + 321 = 1332. - Michael B. Porter, Aug 28 2016 MAPLE a:= proc(n) local s, t, l;       s:= cat("", seq(i, i=1..n)); t:= length(s);       l:= (p-> seq(coeff(p, x, i), i=0..9))(add(x^parse(s[i]), i=1..t));       (10^t-1)/9*combinat[multinomial](t, l)*add(i*l[i+1], i=1..9)/t     end: seq(a(n), n=1..20);  # Alois P. Heinz, Jan 04 2019 MATHEMATICA Table[Total@ Map[FromDigits, Permutations@ Flatten@ Map[IntegerDigits, Range@ n]], {n, 10}] (* or *) Table[Function[d, (((10^Length@ d - 1)/9)* Length@ Union@ Map[FromDigits, Permutations@ d] Total[d])/Length@ d]@ Flatten@ Map[IntegerDigits, Range@ n], {n, 11}] (* Michael De Vlieger, Aug 30 2016, latter after Harvey P. Dale at A047726 *) PROG (PARI) A007908(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!); A055642(n) = #Str(n); A007953(n) = sumdigits(n); a(n) = ((10^A055642(A007908(n))-1)/9)*(A047726(A007908(n))*A007953(A007908(n))/(A055642(A007908(n)))); \\ Altug Alkan, Aug 28 2016 (Python) from math import factorial from operator import mul from functools import reduce def A071268(n):     s = ''.join(str(i) for i in range(1, n+1))     return sum(int(d) for d in s)*factorial(len(s)-1)*(10**len(s)-1)//(9*reduce(mul, (factorial(d) for d in (s.count(w) for w in set(s))))) # Chai Wah Wu, Jan 04 2019 CROSSREFS Cf. A045876, A047726, A007908. Sequence in context: A294436 A242492 A065424 * A012805 A093756 A284333 Adjacent sequences:  A071265 A071266 A071267 * A071269 A071270 A071271 KEYWORD base,nonn AUTHOR Amarnath Murthy, Jun 01 2002 EXTENSIONS Edited by Robert G. Wilson v, Jun 03 2002 Corrected by Altug Alkan, Aug 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 19:29 EDT 2020. Contains 336298 sequences. (Running on oeis4.)