login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071178 Exponent of the largest prime factor of n. 30

%I

%S 0,1,1,2,1,1,1,3,2,1,1,1,1,1,1,4,1,2,1,1,1,1,1,1,2,1,3,1,1,1,1,5,1,1,

%T 1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,3,1,1,1,1,1,1,1,1,1,6,1,1,1,1,

%U 1,1,1,2,1,1,2,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1

%N Exponent of the largest prime factor of n.

%C a(n) = A067255(n,A001222(n)). - _Reinhard Zumkeller_, Jun 11 2013

%C a(n) = the multiplicity of the largest part in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(18) = 2; indeed, the partition having Heinz number 18 = 2*3*3 is [1,2,2]. - _Emeric Deutsch_, Jun 04 2015

%H Reinhard Zumkeller, <a href="/A071178/b071178.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A124010(n, A001221(n)); A053585(n) = A006530(n)^a(n). [_Reinhard Zumkeller_, Aug 27 2011]

%p with(numtheory): with(padic):

%p a:= n-> `if`(n=1, 0, ordp(n, max(factorset(n)[]))):

%p seq(a(n), n=1..120); # _Alois P. Heinz_, Jun 04 2015

%t a[n_] := FactorInteger[n] // Last // Last; Table[a[n], {n, 1, 120}] (* _Jean-Fran├žois Alcover_, Jun 12 2015 *)

%o (Haskell)

%o a071178 = last . a124010_row -- _Reinhard Zumkeller_, Aug 27 2011

%Y Cf. A067029, A215366.

%K easy,nonn

%O 1,4

%A _Benoit Cloitre_, Jun 10 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 16:44 EST 2018. Contains 318049 sequences. (Running on oeis4.)