%I #20 Oct 16 2015 03:27:16
%S 1,11,20,111,120,201,210,300,1111,1120,1201,1210,1300,2011,2020,2101,
%T 2110,2200,3001,3010,3100,4000,11111,11120,11201,11210,11300,12011,
%U 12020,12101,12110,12200,13001,13010,13100,14000,20111,20120,20201
%N Totally balanced decimal numbers: if we assign the weight w(d) = d-1 to each digit d (i.e., w(0) = -1, w(1) = 0, ..., w(9) = 8) and then read the digits of the term from left to right, the partial sum of the weights is never negative and the total weighted sum is zero.
%C The initial portion of this sequence (up to the 6917th term) is equal to A071153 (Łukasiewicz words for rooted plane trees) sorted in ascending order.
%H OEIS Wiki, <a href="/wiki/Łukasiewicz_words">Łukasiewicz words</a>
%H <a href="/index/Lu#Lukasiewicz">Index entries for sequences related to Łukasiewicz</a>
%o (PARI) isok(n) = {my(s = 0); my(d = digits(n)); for (k=1, #d, s += d[k]-1; if (s<0, return (0));); if (s, 0, 1);} \\ _Michel Marcus_, Oct 16 2015
%Y Subset of A061384. Superset of A071161.
%Y Cf. A014486 (totally balanced binary numbers), A071153.
%K nonn,base
%O 1,2
%A _Antti Karttunen_, May 14 2002