OFFSET
1,1
COMMENTS
All primes and prime powers are terms, as are certain other composites (see Example section).
If k is a term then every multiple of k having no prime factors other than those of k are also terms. E.g., since 286 = 2*11*13 is a term, so are 572 = 286*2 and 3146 = 286*11.
If k = 2*p*q where p and q are twin primes, then sum = 2+p+q = 2q is divisible by q, the largest prime factor, so 2*A037074 is a subsequence.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
EXAMPLE
30 = 2*3*5; sum of distinct prime factors is 2+3+5 = 10, which is divisible by 5, so 30 is a term;
2181270 = 2*3*5*7*13*17*47; sum of distinct prime factors is 2+3+5+7+13+17+47 = 94, which is divisible by 47, so 2181270 is a term.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s], Print[{n, ba[n]}]], {n, 2, 1000000}]
PROG
(Haskell)
a071139 n = a071139_list !! (n-1)
a071139_list = filter (\x -> a008472 x `mod` a006530 x == 0) [2..]
-- Reinhard Zumkeller, Apr 18 2013
(PARI) isok(n) = if (n != 1, my(f=factor(n)[, 1]); (sum(k=1, #f~, f[k]) % vecmax(f)) == 0); \\ Michel Marcus, Jul 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 13 2002
EXTENSIONS
Edited by Jon E. Schoenfield, Jul 08 2018
STATUS
approved