login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070997 a(n) = 8*a(n-1) - a(n-2), a(0)=1, a(-1)=1. 26
1, 7, 55, 433, 3409, 26839, 211303, 1663585, 13097377, 103115431, 811826071, 6391493137, 50320119025, 396169459063, 3119035553479, 24556114968769, 193329884196673, 1522082958604615, 11983333784640247, 94344587318517361 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Pellian sequence.

In general, sum{k=0..n, binomial(2n-k,k)j^(n-k)}=(-1)^n*U(2n,I*sqrt(j)/2), I=sqrt(-1); - Paul Barry, Mar 13 2005

a(n) = L(n,8), where L is defined as in A108299; see also A057080 for L(n,-8). - Reinhard Zumkeller, Jun 01 2005

Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7} which do not end in 0. - Tanya Khovanova, Jan 10 2007

Hankel transform of A158197. [From Paul Barry, Mar 13 2009]

For positive n, a(n) equals the permanent of the (2n)X(2n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [From John M. Campbell, Jul 08 2011]

Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 6 = 0. - Colin Barker, Feb 05 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (8,-1).

FORMULA

For all members x of the sequence, 15*x^2 - 6 is a square. Lim. n-> Inf. a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 12 2002

a(n) = (5+sqrt(15))/10 * (4+sqrt(15))^n + (5-sqrt(15))/10 * (4-sqrt(15))^n

a(n) ~ 1/10*sqrt(10)*(1/2*(sqrt(10)+sqrt(6)))^(2*n+1)

a(n) = U(n, 4)-U(n-1, 4) = T(2*n+1, sqrt(5/2))/sqrt(5/2), with Chebyshev's U and T Polynomials and U(-1, x) := 0. U(n, 4)=A001090(n+1), n>=-1.

Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then q(n, 6)=a(n) - Benoit Cloitre, Nov 10 2002

a(n)a(n+3) = 48 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004

a(n)=(-1)^n*U(2n, I*sqrt(6)/2), U(n, x) Chebyshev polynomial of second kind, I=sqrt(-1); - Paul Barry, Mar 13 2005

G.f.: (1-x)/(1-8*x+x^2). a(n)=a(-1-n).

a(n) = Jacobi_P(n,-1/2,1/2,4)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006

[a(n), A001090(n+1)] = [1,6; 1,7]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008

EXAMPLE

1 + 7*x + 55*x^2 + 433*x^3 + 3409*x^4 + 26839*x^5 + ...

MATHEMATICA

CoefficientList[Series[(1 - x)/(1 - 8*x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 26 2013 *)

a[c_, n_] := Module[{},

   p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];

   d := Denominator[Convergents[Sqrt[c], n p]];

   t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];

   Return[t];

   ] (* Complement of A041023 *)

a[15, 20] (* Gerry Martens, Jun 07 2015 *)

PROG

(PARI) {a(n) = subst( 9*poltchebi(n) - poltchebi(n-1), x, 4) / 5} /* Michael Somos, Jun 07 2005 */

(PARI) {a(n) = if( n<0, n=-1-n); polcoeff( (1 - x) / (1 - 8*x + x^2) + x * O(x^n), n)} /* Michael Somos, Jun 07 2005 */

(Sage) [lucas_number1(n, 8, 1)-lucas_number1(n-1, 8, 1) for n in xrange(1, 21)]# [From Zerinvary Lajos, Nov 10 2009]

(MAGMA) I:=[1, 7]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2013

CROSSREFS

a(n) = sqrt((3*A057080(n)^2+2)/5) (cf. Richardson comment)

Cf. A057080, A001090, A001091.

Row 8 of array A094954.

Cf. A001090.

Cf. similar sequences listed in A238379.

Cf. A041023

Sequence in context: A198689 A172743 A015564 * A122372 A083068 A097189

Adjacent sequences:  A070994 A070995 A070996 * A070998 A070999 A071000

KEYWORD

nonn,easy

AUTHOR

Joe Keane (jgk(AT)jgk.org), May 18 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 17 19:40 EST 2017. Contains 294834 sequences.