login
A070973
Smallest integer k such that n divides floor((3/2)^k).
2
1, 2, 3, 16, 4, 37, 5, 16, 38, 49, 6, 44, 40, 29, 50, 16, 7, 51, 9, 49, 30, 40, 15, 44, 8, 40, 52, 56, 36, 50, 23, 43, 41, 26, 20, 81, 43, 9, 41, 49, 16, 73, 11, 40, 51, 29, 63, 44, 34, 49, 225, 40, 224, 196, 27, 56, 10, 36, 45, 50, 126, 23, 74, 193, 279, 41, 76, 26, 30, 56
OFFSET
1,2
COMMENTS
a(n)=n for some n = 1,2,3,16,56,283,....Conjectures : (i) Log(n) < a(n) < n*Log(n)^2 for n>6; (ii) the equation a(x)=n always has a solution.
LINKS
FORMULA
a(n) = min( k : A002379(k) == 0 mod(n) )
MATHEMATICA
sik[n_]:=Module[{k=1}, While[!Divisible[Floor[(3/2)^k], n], k++]; k]; Array[sik, 70] (* Harvey P. Dale, Dec 15 2012 *)
PROG
(PARI) for(n=1, 100, s=1; while(floor((3/2)^s)%n>0, s++); print1(s, ", "))
CROSSREFS
Cf. A002379.
Sequence in context: A292709 A097655 A080749 * A209593 A054496 A351748
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 24 2002
STATUS
approved