login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070919 a(n) = Card{ (x,y,z) | lcm(x,y,z)=n }. 8
1, 7, 7, 19, 7, 49, 7, 37, 19, 49, 7, 133, 7, 49, 49, 61, 7, 133, 7, 133, 49, 49, 7, 259, 19, 49, 37, 133, 7, 343, 7, 91, 49, 49, 49, 361, 7, 49, 49, 259, 7, 343, 7, 133, 133, 49, 7, 427, 19, 133, 49, 133, 7, 259, 49, 259, 49, 49, 7, 931, 7, 49, 133, 127, 49, 343, 7, 133 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A048691(n) gives Card{ (x,y) | lcm(x,y)=n }.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.

FORMULA

a(n) = Sum_{d|n} A000005(d)^3*A008683(n/d).

Sum_{k>0} a(k)/k^s = (1/zeta(s))*Sum_{k>0} tau(k)^3/k^s.

Multiplicative with a(p^e) = 1+3*e+3*e^2 for prime p and e >= 0. - Werner Schulte, Nov 30 2018

MATHEMATICA

Join[{1}, Table[Product[(k + 1)^3 - k^3, {k, FactorInteger[n][[All, 2]]}], {n, 2, 68}]] (* Geoffrey Critzer, Jan 10 2015 *)

PROG

(PARI) for(n=1, 100, print1(sumdiv(n, d, numdiv(d)^3*moebius(n/d)), ", "))

CROSSREFS

Cf. A048691, A070920, A070921, A086222, A247513.

Sequence in context: A165138 A196395 A139126 * A070847 A195863 A053416

Adjacent sequences:  A070916 A070917 A070918 * A070920 A070921 A070922

KEYWORD

mult,easy,nonn

AUTHOR

Benoit Cloitre, May 20 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)