|
|
A070897
|
|
Number of ways of pairing numbers 1 to n with numbers n+1 to 2n such that each pair sums to a prime.
|
|
7
|
|
|
1, 1, 1, 1, 2, 4, 8, 36, 40, 49, 126, 121, 440, 2809, 11395, 32761, 132183, 881721, 3015500, 19642624, 106493895, 249987721, 1257922092, 4609187881, 29262161844, 189192811369, 1068996265025, 7388339422500, 67416357342087
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
FORMULA
|
a(n) = permanent(m), where the n X n matrix m is defined by m(i,j) = 1 or 0, depending on whether i+j+n is prime or composite, respectively. - T. D. Noe, Feb 10 2007
a(n) = A071058(n) * A071059(n).
|
|
EXAMPLE
|
a(5)=2 because there are two ways: 1+10, 2+9, 3+8, 4+7, 6+5 and 1+6, 2+9, 3+10, 4+7, 5+8.
|
|
MATHEMATICA
|
<<Combinatorica`; listQpart2[ n_ ] := {n-#, #}&/@Range[ Floor[ (n-1)/2 ] ]; Noe[ n_Integer ] := Module[ {it, permoid, po}, it=Union@Flatten[ Cases[ listQpart2[ # ], q_/; Max[ q ]<=2*n&&Max[ q ]>n ]& /@Select[ Range[ n+2, 3*n ], PrimeQ ], 1 ]; po=Position[ it, # ]&/@Range[ n ]; permoid=(Extract[ it, # ]-n)& /@(po /. {i_Integer, j_}->{i, 1} ); Length@Backtrack[ permoid, UnsameQ@@#&, Length[ # ]===n&, All ] ]; Noe/@Range[ 2, 16 ] (* from Wouter Meeussen *)
a[n_] := Permanent[Table[If[PrimeQ[i+j+n], 1, 0], {i, n}, {j, n}]]; Table[ an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Feb 26 2016 *)
|
|
PROG
|
(Haskell)
import Data.List (permutations)
a070897 n = length $ filter (all ((== 1) . a010051))
$ map (zipWith (+) [1..n]) (permutations [n+1..2*n])
-- Reinhard Zumkeller, Mar 19 2011, Apr 16 2011 (fixed)
|
|
CROSSREFS
|
Cf. A000341, A071058, A071059, A073364.
Sequence in context: A138744 A243547 A263623 * A180154 A320025 A172977
Adjacent sequences: A070894 A070895 A070896 * A070898 A070899 A070900
|
|
KEYWORD
|
nice,nonn
|
|
AUTHOR
|
T. D. Noe, May 23 2002
|
|
EXTENSIONS
|
More terms from Don Reble, May 26 2002
|
|
STATUS
|
approved
|
|
|
|