This site is supported by donations to The OEIS Foundation.

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070893 Let r, s, t be three permutations of the set {1,2,3,..,n}; a(n)= value of sum_{i=1..n} r(i)*s(i)*t(i), with r={1,2,3,..,n}; s={n,n-1,..,1} and t={n,n-2,n-4,...,1,...,n-3,n-1}. 10
 1, 6, 19, 46, 94, 172, 290, 460, 695, 1010, 1421, 1946, 2604, 3416, 4404, 5592, 7005, 8670, 10615, 12870, 15466, 18436, 21814, 25636, 29939, 34762, 40145, 46130, 52760, 60080, 68136, 76976, 86649, 97206, 108699, 121182, 134710, 149340 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A070735 for the minimal values for these products. This series is an upper bound. The third permutation 't'= Ceiling[Abs[Range[n-1/2,-n,-2]]] is such that it associates its smallest factor with the largest factor of the product 'r'*'s'. We observe that is the transform of A002717 by the following transform T: T(u_0,u_1,u_2,u_3,...)=(u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In another terms v_p=sum(u_k,k=0..p) and the G.f phi_v of v is given by: phi_v=phi_u/(1-z). [From Richard Choulet, Jan 28 2010] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index to sequences with linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1). FORMULA G.f.: x*(1+2*x)/((1+x)*(1-x)^5). - Michael Somos, Apr 07 2003 a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5)+3. If sequence is also defined for n <= 0 by this equation, then a(n)=0 for -3 <= n <= 0 and a(n)=A082289(-n) for n <= -4. - Michael Somos, Apr 07 2003 a(n) = (1/96)*(2*n*(n+2)*(3*n^2+10*n+4)+3*(-1)^n-3). a(n)-a(n-2) = A002411(n).  - Bruno Berselli, Aug 26 2011 EXAMPLE {1,2,3,4,5,6,7}*{7,6,5,4,3,2,1}*{7,5,3,1,2,4,6} gives {49,60,45,16,30,48,42}, with sum 290, so a(7)=290 MAPLE with (combinat):a[0]:=0:for n from 1 to 50 do a[n]:=stirling2(n+2, n)-a[n-1] od: seq(a[n], n=1..38); - Zerinvary Lajos, Mar 17 2008 MATHEMATICA Table[Plus@@(Range[n]*Range[n, 1, -1]*Ceiling[Abs[Range[n-1/2, -n, -2]]]), {n, 49}]; or CoefficientList[Series[ -(1+2x)/(-1+x)^5/(1+x), {x, 0, 48}], x]//Flatten PROG (PARI) a(n)=sum(i=1, n, i*(n+1-i)*ceil(abs(n+3/2-2*i))) (PARI) a(n)=polcoeff(if(n<0, x^4*(2+x)/((1+x)*(1-x)^5), x*(1+2*x)/((1+x)*(1-x)^5))+x*O(x^abs(n)), abs(n)) (MAGMA) [(1/96)*(2*n*(n+2)*(3*n^2+10*n+4)+3*(-1)^n-3): n in [1..40]]; // Vincenzo Librandi, Aug 26 2011 CROSSREFS Cf. A070735, A082289. a(n)=A082290(2n-2). Cf. A000034, A032766, A006578, A002717. [From Richard Choulet, Jan 28 2010] Cf. A002717 (first differences). - Bruno Berselli, Aug 26 2011 Column k=3 of A166278. - Alois P. Heinz, Nov 02 2012 Sequence in context: A183763 A209403 A005712 * A027963 A034199 A073362 Adjacent sequences:  A070890 A070891 A070892 * A070894 A070895 A070896 KEYWORD nonn,easy AUTHOR Wouter Meeussen, May 22 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .