login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070877 Expansion of Product_{k>=1} (1 - 2x^k). 5
1, -2, -2, 2, 2, 6, -2, 2, -6, -10, -2, -6, -6, 6, 22, -6, 26, 14, 22, -6, -14, -2, -10, -46, -46, -50, -18, 18, -78, 22, 14, 82, 42, 166, 14, 42, 170, 118, 6, 106, -150, -66, -122, -118, -62, -370, -282, -350, -126, -354, -2, -94, 226, -250, 30, 450, 730, 342, 894, 474, 890, 358, 758, 58, 1210, 782, -778, 26, -270, -1250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Giovanni Resta)

EXAMPLE

G.f. = 1 - 2*x - 2*x^2 + 2*x^3 + 2*x^4 + 6*x^5 - 2*x^6 + 2*x^7 - 6*x^8 - 10*x^9 + ...

MATHEMATICA

CoefficientList[ Series[ Product[(1 - 2t^k), {k, 1, 80}], {t, 0, 80}], t]

a[ n_] := SeriesCoefficient[ -QPochhammer[2, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)

PROG

(PARI) N=66; q='q+O('q^N); Vec(sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014

(PARI) N=66; q='q+O('q^N); t2=Vec( prod(k=1, N, 1-2*q^k) ) \\ Joerg Arndt, Mar 11 2014

CROSSREFS

Cf. A070933, A010815, A032302.

Sequence in context: A273258 A073124 A278260 * A156717 A198889 A329814

Adjacent sequences:  A070874 A070875 A070876 * A070878 A070879 A070880

KEYWORD

sign

AUTHOR

Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

EXTENSIONS

Edited by Robert G. Wilson v, May 26 2002

Corrected by Vincenzo Librandi, Mar 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 02:28 EDT 2020. Contains 336367 sequences. (Running on oeis4.)