%I #17 Dec 07 2019 12:18:23
%S 0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,
%T 24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,
%U 18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1,7,18,24,0,1
%N a(n) = n^5 mod 25.
%C Period 5: repeat [0, 1, 7, 18, 24]. - _Jianing Song_, Apr 06 2019
%H Colin Barker, <a href="/A070609/b070609.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1).
%F From _Colin Barker_, Apr 06 2019: (Start)
%F G.f.: x*(1 + 4*x)*(1 + 3*x + 6*x^2) / ((1 - x)*(1 + x + x^2 + x^3 + x^4)).
%F a(n) = a(n-5) for n>4.
%F (End)
%o (Sage) [power_mod(n,5,25)for n in range(0, 87)] # - _Zerinvary Lajos_, Nov 04 2009
%o (PARI) a(n)=n^5%25 \\ _Charles R Greathouse IV_, Apr 06 2016
%o (PARI) concat(0, Vec(x*(1 + 4*x)*(1 + 3*x + 6*x^2) / ((1 - x)*(1 + x + x^2 + x^3 + x^4)) + O(x^80))) \\ _Colin Barker_, Apr 06 2019
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, May 13 2002