|
|
A070531
|
|
Generalized Bell numbers B_{4,3}.
|
|
3
|
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..200
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
|
|
FORMULA
|
In Maple notation, a(n)=(1/12)*n!*(n+1)!*(n+2)!*hypergeom([n+1, n+2, n+3], [2, 3, 4], 1)/exp(1)).
a(n)=sum(A090440(n, k), k=3..3*n)= sum((1/k!)*product(fallfac(k+(j-1)*(4-3), 3), j=1..n), k=3..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
|
|
MATHEMATICA
|
ff[n_, k_] = Pochhammer[n - k + 1, k]; a[1, 3] = 1; a[n_, k_] := a[n, k] = Sum[Binomial[3, p]*ff[(n - 1 - p + k), 3 - p]*a[n - 1, k - p], {p, 0, 3} ]; a[n_ /; n < 2, _] = 0; Table[Sum[a[n, k] , {k, 3, 3 n}], {n, 1, 9}] (* Jean-François Alcover, Sep 01 2011 *)
|
|
CROSSREFS
|
Cf. A091028 (alternating row sums of A090440).
Sequence in context: A174747 A210382 A091757 * A274591 A232293 A232366
Adjacent sequences: A070528 A070529 A070530 * A070532 A070533 A070534
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Karol A. Penson, May 02 2002
|
|
EXTENSIONS
|
Edited by Wolfdieter Lang, Dec 23 2003
|
|
STATUS
|
approved
|
|
|
|