login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070531 Generalized Bell numbers B_{4,3}. 2
1, 73, 16333, 8030353, 7209986401, 10541813012041, 23227377813664333, 72925401604382826913, 312727862321385812968033 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

LINKS

Table of n, a(n) for n=1..9.

FORMULA

In Maple notation, a(n)=(1/12)*n!*(n+1)!*(n+2)!*hypergeom([n+1, n+2, n+3], [2, 3, 4], 1)/exp(1)).

a(n)=sum(A090440(n, k), k=3..3*n)= sum((1/k!)*product(fallfac(k+(j-1)*(4-3), 3), j=1..n), k=3..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

MATHEMATICA

ff[n_, k_] = Pochhammer[n - k + 1, k]; a[1, 3] = 1; a[n_, k_] := a[n, k] = Sum[Binomial[3, p]*ff[(n - 1 - p + k), 3 - p]*a[n - 1, k - p], {p, 0, 3} ]; a[n_ /; n < 2, _] = 0; Table[Sum[a[n, k] , {k, 3, 3 n}], {n, 1, 9}] (* Jean-Fran├žois Alcover, Sep 01 2011 *)

CROSSREFS

Cf. A091028 (alternating row sums of A090440).

Sequence in context: A174747 A210382 A091757 * A232293 A232366 A183490

Adjacent sequences:  A070528 A070529 A070530 * A070532 A070533 A070534

KEYWORD

nonn

AUTHOR

Karol A. Penson, May 02 2002

EXTENSIONS

Edited by Wolfdieter Lang, Dec 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 05:04 EST 2014. Contains 249839 sequences.