login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070514 Final digit of n^4: n^4 mod 10. 4
0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Decimal expansion of 538853870/3333333333. - Alexander R. Povolotsky, Mar 09 2013

LINKS

Table of n, a(n) for n=0..100.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

a(n) = n^k mod 10; for k > 0 where k mod 4 = 0. - Doug Bell, Jun 15 2015

From G. C. Greubel, Apr 01 2016: (Start)

a(n) = a(n-10).

a(2*n) = 6*A011558(n).

G.f.: (x +6*x^2 +x^3 +6*x^4 +5*x^5 +6*x^6 +x^7 +6*x^8 +x^9)/(1 - x^10). (End)

MAPLE

A070514:=n->n^4 mod 10: seq(A070514(n), n=0..100); # Wesley Ivan Hurt, Apr 01 2016

MATHEMATICA

LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 6, 1, 6, 5, 6, 1, 6, 1}, 100] (* Vincenzo Librandi, Jun 16 2015 *)

PowerMod[Range[0, 100], 4, 10] (* G. C. Greubel, Apr 01 2016 *)

PROG

(Sage) [power_mod(n, 4, 10)for n in range(0, 101)] # Zerinvary Lajos, Oct 30 2009

(MAGMA) [n^4 mod (10): n in [0..80]]; // Vincenzo Librandi, Jun 16 2015

(PARI) vector(100, n, n--; n^4%10) \\ Derek Orr, Jun 16 2015

CROSSREFS

Cf. A010879, A008959, A008960. - Doug Bell, Jun 15 2015

Sequence in context: A010492 A276515 A144544 * A169886 A292862 A070472

Adjacent sequences:  A070511 A070512 A070513 * A070515 A070516 A070517

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, May 13 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 16:00 EST 2020. Contains 332171 sequences. (Running on oeis4.)