The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070472 a(n) = n^3 mod 7. 3
 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Periodic with period 7. LINKS Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 1). FORMULA a(n) = a(n-7). a(n) = 1/7*{7*(n mod 7)+[(n+1) mod 7]-4*[(n+2) mod 7]+6*[(n+3) mod 7]-4*[(n+4) mod 7]+[(n+5) mod 7]} with n>=0. - Paolo P. Lava, Nov 27 2006 G.f.: x*(1 + x + 6*x^2 + x^3 + 6*x^4 + 6*x^5)/(1-x^7). - Vincenzo Librandi, Mar 27 2016 MATHEMATICA PowerMod[Range[0, 120], 3, 7] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 1}, {0, 1, 1, 6, 1, 6, 6}, 120] (* or *) PadRight[{}, 120, {0, 1, 1, 6, 1, 6, 6}] (* Harvey P. Dale, Nov 29 2013 *) PROG (Sage) [power_mod(n, 3, 7 ) for n in range(0, 101)] # Zerinvary Lajos, Oct 29 2009 (MAGMA) [Modexp(n, 3, 7 ): n in [0..100]]; // Vincenzo Librandi, Mar 27 2016 (PARI) a(n)=n^3%7 \\ Charles R Greathouse IV, Apr 06 2016 CROSSREFS Sequence in context: A070514 A169886 A292862 * A320394 A151784 A093563 Adjacent sequences:  A070469 A070470 A070471 * A070473 A070474 A070475 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 11:11 EST 2020. Contains 331083 sequences. (Running on oeis4.)