This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070432 Period 4: repeat [0, 1, 4, 1]; a(n) = n^2 mod 8. 7
 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Multiplicative with a(2) = 4, a(2^e) = 0 if e >= 2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,1). - R. J. Mathar, Apr 20 2010 FORMULA From R. J. Mathar, Apr 20 2010: (Start) a(n) = a(n-4) for n > 3. G.f.: -x*(1+4*x+x^2) / ( (x-1)*(1+x)*(x^2+1) ). (End) From Paolo P. Lava, May 14 2010: (Start) a(n) = (1/2)*((n mod 4) + 2*((n+1) mod 4) - ((n+2) mod 4)). a(n) = (1/2)*(3 - 2*I^n + (-1)^n - 2*(-I)^n), I = sqrt(-1). (End) Dirichlet g.f.: zeta(s)*(1 + 4*2^(-s))*(1 - 2^(-s)). - R. J. Mathar, Mar 10 2011 a(n) = (n mod 2) + 4*floor(((n+1) mod 4)/3). - Gary Detlefs, Dec 29 2011 From Wesley Ivan Hurt, Mar 19 2015: (Start) a(n) = (((n+1) mod 4) - 1)^2. a(n) = (1 + (-1)^n - 2(-1)^((2n + 1 - (-1)^n)/4))^2/4. (End) E.g.f.: 2*cosh(x) + sinh(x) - 2*cos(x). - G. C. Greubel, Mar 22 2016 a(n) = (3 + cos(n*Pi) - 4*cos(n*Pi/2))/2. - Wesley Ivan Hurt, Dec 21 2016 a(n) = a(-n) for all n in Z. - Michael Somos, Dec 22 2016 EXAMPLE G.f. = x + 4*x^2 + x^3 + x^5 + 4*x^6 + x^7 + x^9 + 4*x^10 + x^11 + x^13 + ... MAPLE seq(n mod 2 + 4*floor(((n+1) mod 4)/3), n = 0..200) # Gary Detlefs, Dec 29 2011 MATHEMATICA Table[Mod[n^2, 8], {n, 0, 99}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) Mod[Range[0, 99]^2, 8] (* Alonso del Arte, Mar 20 2015 *) PROG (PARI) a(n)=n^2%8 \\ Charles R Greathouse IV, Oct 07 2015 (MAGMA) &cat [[0, 1, 4, 1]^^30]; // Wesley Ivan Hurt, Dec 21 2016 CROSSREFS Cf. A070430, A070431. Sequence in context: A290459 A290458 A035253 * A170989 A290457 A253004 Adjacent sequences:  A070429 A070430 A070431 * A070433 A070434 A070435 KEYWORD nonn,easy,mult AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 10:58 EST 2018. Contains 318160 sequences. (Running on oeis4.)