This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070410 a(n) = 7^n mod 25. 1
 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18, 1, 7, 24, 18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-1,1). FORMULA From Paolo P. Lava, Feb 25 2010: (Start) a(n) = (1/12)*{76*(n mod 4)+43*[(n+1) mod 4]-26*[(n+2) mod 4]+7*[(n+3) mod 4]}, with n>=0. a(n) = (25/2)-(23/4-11/4*I)*I^n-(23/4+11/4*I)*(-I)^n, with n>=0 and I=sqrt(-1). (End) From R. J. Mathar, Apr 20 2010: (Start) a(n) = a(n-1) - a(n-2) + a(n-3). G.f.: ( -1-6*x-18*x^2 ) / ( (x-1)*(1+x^2) ). (End) a(n) = 25 - a(n-2), n>=2. - Vincenzo Librandi, Feb 08 2011 From G. C. Greubel, Mar 20 2016: (Start) a(n) = a(n-4). E.g.f.: (1/2)*(25*exp(x) - 23*cos(x) - 11*sin(x)). (End) MATHEMATICA PowerMod[7, Range[0, 50], 25] (* G. C. Greubel, Mar 20 2016 *) PROG (Sage) [power_mod(7, n, 25) for n in xrange(0, 84)] # Zerinvary Lajos, Nov 27 2009 (PARI) a(n) = lift(Mod(7, 25)^n); \\ Altug Alkan, Mar 20 2016 (MAGMA) [Modexp(7, n, 25): n in [0..100]]; // Bruno Berselli, Mar 22 2016 CROSSREFS Sequence in context: A124985 A126612 A196113 * A077035 A076602 A076673 Adjacent sequences:  A070407 A070408 A070409 * A070411 A070412 A070413 KEYWORD nonn AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 11:45 EDT 2017. Contains 284186 sequences.