login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070404 a(n) = 7^n mod 11. 4
1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1).

FORMULA

a(n) = (1/90)*{74*(n mod 10)+20*[(n+1) mod 10]-16*[(n+2) mod 10]-7*[(n+3) mod 10]+65*[(n+4) mod 10]-52*[(n+5) mod 10]+2*[(n+6) mod 10]+38*[(n+7) mod 10]+29*[(n+8) mod 10]-43*[(n+9) mod 10]}, with n>=0. - Paolo P. Lava, Feb 24 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-5) + a(n-6).

G.f.:( -1-6*x+2*x^2+3*x^3-x^4-8*x^5) / ((x-1)*(1+x)*(x^4-x^3+x^2-x+1)). (End)

a(n) = a(n-10). - G. C. Greubel, Mar 20 2016

MATHEMATICA

PowerMod[7, Range[0, 100], 11] (* or *) LinearRecurrence[{1, 0, 0, 0, -1, 1}, {1, 7, 5, 2, 3, 10}, 100] (* Harvey P. Dale, Jul 17 2015 *)

PROG

(Sage) [power_mod(7, n, 11) for n in xrange(0, 99)] # Zerinvary Lajos, Nov 03 2009

(PARI) a(n) = lift(Mod(7, 11)^n); \\ Altug Alkan, Mar 20 2016

(MAGMA) [Modexp(7, n, 11): n in [0..100]]; // Bruno Berselli, Mar 22 2016

CROSSREFS

Sequence in context: A084911 A071876 A191503 * A258370 A135537 A212038

Adjacent sequences:  A070401 A070402 A070403 * A070405 A070406 A070407

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 23:43 EDT 2017. Contains 290782 sequences.