login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070404 a(n) = 7^n mod 11. 4
1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1).

FORMULA

a(n) = (1/90)*{74*(n mod 10)+20*[(n+1) mod 10]-16*[(n+2) mod 10]-7*[(n+3) mod 10]+65*[(n+4) mod 10]-52*[(n+5) mod 10]+2*[(n+6) mod 10]+38*[(n+7) mod 10]+29*[(n+8) mod 10]-43*[(n+9) mod 10]}, with n>=0. - Paolo P. Lava, Feb 24 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-5) + a(n-6).

G.f.:( -1-6*x+2*x^2+3*x^3-x^4-8*x^5) / ((x-1)*(1+x)*(x^4-x^3+x^2-x+1)). (End)

a(n) = a(n-10). - G. C. Greubel, Mar 20 2016

MATHEMATICA

PowerMod[7, Range[0, 100], 11] (* or *) LinearRecurrence[{1, 0, 0, 0, -1, 1}, {1, 7, 5, 2, 3, 10}, 100] (* Harvey P. Dale, Jul 17 2015 *)

PROG

(Sage) [power_mod(7, n, 11) for n in xrange(0, 99)] # Zerinvary Lajos, Nov 03 2009

(PARI) a(n) = lift(Mod(7, 11)^n); \\ Altug Alkan, Mar 20 2016

(MAGMA) [Modexp(7, n, 11): n in [0..100]]; // Bruno Berselli, Mar 22 2016

CROSSREFS

Sequence in context: A084911 A071876 A191503 * A258370 A135537 A212038

Adjacent sequences:  A070401 A070402 A070403 * A070405 A070406 A070407

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 19:06 EST 2017. Contains 294894 sequences.