login
A070400
a(n) = 6^n mod 37.
1
1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31
OFFSET
0,2
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3).
G.f.: ( -1-5*x-31*x^2 ) / ( (x-1)*(1+x^2) ). (End)
From G. C. Greubel, Mar 19 2016: (Start)
a(n) = a(n-4).
a(n) = (1/2)*(37 - 35*cos(n*Pi/2) - 25*sin(n*Pi/2)).
E.g.f.: (1/2)*(37*exp(x) - 35*cos(x) - 25*sin(x)). (End)
MATHEMATICA
PowerMod[6, Range[0, 50], 37] (* G. C. Greubel, Mar 19 2016 *)
PROG
(Sage) [power_mod(6, n, 37)for n in range(0, 84)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n)=lift(Mod(6, 37)^n) \\ Charles R Greathouse IV, Mar 22 2016
CROSSREFS
Sequence in context: A137868 A070401 A330681 * A222929 A222784 A043063
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved