login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070400 a(n) = 6^n mod 37. 1
1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,-1,1).

FORMULA

a(n) = (1/12)*{127*(n mod 4)+52*[(n+1) mod 4]-53*[(n+2) mod 4]+22*[(n+3) mod 4]}, with n>=0. - Paolo P. Lava, Apr 16 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-2) + a(n-3).

G.f.: ( -1-5*x-31*x^2 ) / ( (x-1)*(1+x^2) ). (End)

From G. C. Greubel, Mar 19 2016: (Start)

a(n) = a(n-4).

a(n) = (1/2)*(37 - 35*cos(n*Pi/2) - 25*sin(n*Pi/2)).

E.g.f.: (1/2)*(37*exp(x) - 35*cos(x) - 25*sin(x)). (End)

MATHEMATICA

PowerMod[6, Range[0, 50], 37] (* G. C. Greubel, Mar 19 2016 *)

PROG

(Sage) [power_mod(6, n, 37)for n in xrange(0, 84)] # Zerinvary Lajos, Nov 27 2009

(PARI) a(n)=lift(Mod(6, 37)^n) \\ Charles R Greathouse IV, Mar 22 2016

CROSSREFS

Sequence in context: A001311 A137868 A070401 * A222929 A222784 A043063

Adjacent sequences:  A070397 A070398 A070399 * A070401 A070402 A070403

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 24 15:07 EDT 2017. Contains 288697 sequences.