This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070400 a(n) = 6^n mod 37. 1
 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-1,1). FORMULA a(n) = (1/12)*{127*(n mod 4)+52*[(n+1) mod 4]-53*[(n+2) mod 4]+22*[(n+3) mod 4]}, with n>=0. - Paolo P. Lava, Apr 16 2010 From R. J. Mathar, Apr 20 2010: (Start) a(n) = a(n-1) - a(n-2) + a(n-3). G.f.: ( -1-5*x-31*x^2 ) / ( (x-1)*(1+x^2) ). (End) From G. C. Greubel, Mar 19 2016: (Start) a(n) = a(n-4). a(n) = (1/2)*(37 - 35*cos(n*Pi/2) - 25*sin(n*Pi/2)). E.g.f.: (1/2)*(37*exp(x) - 35*cos(x) - 25*sin(x)). (End) MATHEMATICA PowerMod[6, Range[0, 50], 37] (* G. C. Greubel, Mar 19 2016 *) PROG (Sage) [power_mod(6, n, 37)for n in xrange(0, 84)] # Zerinvary Lajos, Nov 27 2009 (PARI) a(n)=lift(Mod(6, 37)^n) \\ Charles R Greathouse IV, Mar 22 2016 CROSSREFS Sequence in context: A001311 A137868 A070401 * A222929 A222784 A043063 Adjacent sequences:  A070397 A070398 A070399 * A070401 A070402 A070403 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.