

A070397


a(n) = 6^n mod 25.


1



1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16, 21, 1, 6, 11, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1). [From R. J. Mathar, Apr 20 2010]


FORMULA

a(n) = (1/10)*(51*(n mod 5)+((n+1) mod 5)+((n+2) mod 5)+((n+3) mod 5)+((n+4) mod 5)).  Paolo P. Lava, Apr 16 2010
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n5).
G.f.: ( 16*x11*x^216*x^321*x^4 ) / ((x1)*(1+x+x^2+x^3+x^4)). (End)


MATHEMATICA

PowerMod[6, Range[0, 80], 25] (* Harvey P. Dale, Jul 22 2013 *)


PROG

(Sage) [power_mod(6, n, 25)for n in xrange(0, 79)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n) = lift(Mod(6, 25)^n); \\ Altug Alkan, Mar 18 2016


CROSSREFS

Sequence in context: A287577 A118659 A072353 * A080904 A081746 A080900
Adjacent sequences: A070394 A070395 A070396 * A070398 A070399 A070400


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 12 2002


STATUS

approved



