

A070394


a(n) = 6^n mod 17.


1



1, 6, 2, 12, 4, 7, 8, 14, 16, 11, 15, 5, 13, 10, 9, 3, 1, 6, 2, 12, 4, 7, 8, 14, 16, 11, 15, 5, 13, 10, 9, 3, 1, 6, 2, 12, 4, 7, 8, 14, 16, 11, 15, 5, 13, 10, 9, 3, 1, 6, 2, 12, 4, 7, 8, 14, 16, 11, 15, 5, 13, 10, 9, 3, 1, 6, 2, 12, 4, 7, 8, 14, 16, 11, 15, 5, 13, 10, 9, 3, 1, 6, 2, 12, 4, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,1). [R. J. Mathar, Apr 20 2010]


FORMULA

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n1)  a(n8) + a(n9).
G.f.: ( 15*x+4*x^210*x^3+8*x^43*x^5x^66*x^73*x^8 ) / ( (x1)*(1+x^8) ). (End)
a(n) = a(n16).  G. C. Greubel, Mar 18 2016


MATHEMATICA

PowerMod[6, Range[0, 50], 17] (* G. C. Greubel, Mar 18 2016 *)


PROG

(Sage) [power_mod(6, n, 17)for n in xrange(0, 86)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n) = lift(Mod(6, 17)^n); \\ Altug Alkan, Mar 18 2016


CROSSREFS

Sequence in context: A194351 A040035 A065272 * A065174 A065284 A050088
Adjacent sequences: A070391 A070392 A070393 * A070395 A070396 A070397


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 12 2002


STATUS

approved



