login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070393 a(n) = 6^n mod 13. 1
1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Period 12: repeat [1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11]. - Harvey P. Dale, Feb 26 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,-1,1). [R. J. Mathar, Apr 20 2010]

FORMULA

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-1) - a(n-6) + a(n-7).

G.f.: (-1-5*x-4*x^2+2*x^3-x^4+7*x^5-11*x^6)/((x-1)*(x^2+1)*(x^4-x^2+1)). (End)

a(n) = a(n-12). - G. C. Greubel, Mar 18 2016

MATHEMATICA

PowerMod[6, Range[0, 100], 13] (* Harvey P. Dale, Feb 26 2014 *)

LinearRecurrence[{1, 0, 0, 0, 0, -1, 1}, {1, 6, 10, 8, 9, 2, 12}, 100] (* Harvey P. Dale, Feb 26 2014 *)

PROG

(Sage) [power_mod(6, n, 13)for n in xrange(0, 93)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n) = lift(Mod(6, 13)^n); \\ Altug Alkan, Mar 18 2016

CROSSREFS

Sequence in context: A010726 A084365 A066135 * A071630 A003862 A127019

Adjacent sequences:  A070390 A070391 A070392 * A070394 A070395 A070396

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 06:13 EDT 2017. Contains 288709 sequences.