

A070393


a(n) = 6^n mod 13.


1



1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, 7, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Period 12: repeat [1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11].  Harvey P. Dale, Feb 26 2014


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,1). [R. J. Mathar, Apr 20 2010]


FORMULA

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n1)  a(n6) + a(n7).
G.f.: (15*x4*x^2+2*x^3x^4+7*x^511*x^6)/((x1)*(x^2+1)*(x^4x^2+1)). (End)
a(n) = a(n12).  G. C. Greubel, Mar 18 2016


MATHEMATICA

PowerMod[6, Range[0, 100], 13] (* Harvey P. Dale, Feb 26 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, 1}, {1, 6, 10, 8, 9, 2, 12}, 100] (* Harvey P. Dale, Feb 26 2014 *)


PROG

(Sage) [power_mod(6, n, 13)for n in range(0, 93)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n) = lift(Mod(6, 13)^n); \\ Altug Alkan, Mar 18 2016


CROSSREFS

Sequence in context: A010726 A084365 A066135 * A071630 A003862 A127019
Adjacent sequences: A070390 A070391 A070392 * A070394 A070395 A070396


KEYWORD

nonn,changed


AUTHOR

N. J. A. Sloane, May 12 2002


STATUS

approved



