login
a(n) = 5^n mod 46.
1

%I #20 Dec 18 2023 14:14:01

%S 1,5,25,33,27,43,31,17,39,11,9,45,41,21,13,19,3,15,29,7,35,37,1,5,25,

%T 33,27,43,31,17,39,11,9,45,41,21,13,19,3,15,29,7,35,37,1,5,25,33,27,

%U 43,31,17,39,11,9,45,41,21,13,19,3,15,29,7,35,37,1,5,25,33,27,43,31,17,39

%N a(n) = 5^n mod 46.

%H G. C. Greubel, <a href="/A070391/b070391.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 1).

%F a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) +2*a(n-5) -2*a(n-6) +2*a(n-7) -2*a(n-8) +2*a(n-9) -2*a(n-10) +a(n-11). - _R. J. Mathar_, Apr 20 2010

%F a(n) = a(n-22). - _G. C. Greubel_, Mar 18 2016

%o (Sage) [power_mod(5,n,46)for n in range(0,75)] # _Zerinvary Lajos_, Nov 26 2009

%o (PARI) a(n) = lift(Mod(5, 46)^n); \\ _Altug Alkan_, Mar 18 2016

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 12 2002