login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070390 a(n) = 5^n mod 44. 1
1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5, 25, 37, 9, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1). [R. J. Mathar, Apr 20 2010]

FORMULA

a(n) = (1/50)*{157*(n mod 5)+357*[(n+1) mod 5]-43*[(n+2) mod 5]-123*[(n+3) mod 5]+37*[(n+4) mod 5]}, with n>=0. - Paolo P. Lava, Apr 16 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-5).

G.f.: ( -1-5*x-25*x^2-37*x^3-9*x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). (End)

MATHEMATICA

PowerMod[5, Range[0, 90], 44] (* or *) LinearRecurrence[{0, 0, 0, 0, 1}, {1, 5, 25, 37, 9}, 90] (* Harvey P. Dale, Apr 21 2011 *)

PROG

(Sage) [power_mod(5, n, 44)for n in xrange(0, 87)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n) = lift(Mod(5, 44)^n); \\ Altug Alkan, Mar 18 2016

CROSSREFS

Sequence in context: A084967 A249827 A279541 * A018724 A070389 A098993

Adjacent sequences:  A070387 A070388 A070389 * A070391 A070392 A070393

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 05:25 EST 2017. Contains 294853 sequences.