login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070386 a(n) = 5^n mod 39. 1
1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1, 5, 25, 8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,1). [R. J. Mathar, Apr 20 2010]

FORMULA

a(n) = (1/8)*(27*(n mod 4)+47*((n+1) mod 4)-27*((n+2) mod 4)+5*((n+3) mod 4)). - Paolo P. Lava, Apr 16 2010

From R. J. Mathar, Apr 20 2010: (Start)

a(n) = a(n-4).

G.f.: ( -1-5*x-25*x^2-8*x^3 ) / ( (x-1)*(1+x)*(x^2+1) ). (End)

a(n) = (13*(-1)^n-3*((8+i)*(-i)^n+(8-i)*i^n)+39)/4, where i=sqrt(-1). - Bruno Berselli, Feb 07 2011

E.g.f.: (1/2)*(26*cosh(x) + 13*sinh(x) - 24*cos(x) - 3*sin(x)). - G. C. Greubel, Mar 16 2016

MATHEMATICA

PowerMod[5, Range[0, 120], 39] (* or *) PadRight[{}, 120, {1, 5, 25, 8}] (* Harvey P. Dale, Nov 19 2014 *)

PROG

(Sage) [power_mod(5, n, 39) for n in xrange(0, 93)] # Zerinvary Lajos, Nov 26 2009

(PARI) a(n) = lift(Mod(5, 39)^n); \\ Altug Alkan, Mar 16 2016

CROSSREFS

Sequence in context: A070387 A123748 A050108 * A050084 A070379 A143254

Adjacent sequences:  A070383 A070384 A070385 * A070387 A070388 A070389

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 07:51 EDT 2017. Contains 287202 sequences.